模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (6): 806-811    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Discriminative Learning of TAN Classifier Based on KL Divergence
FENG Qi, TIAN Feng-Zhan, HUANG Hou-Kuan
School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044

Download: PDF (327 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Tree-augmented Nave bayes (TAN) classifier is a compromise between model complexity and classification rate. It is a hot research topic currently. To improve the classification accuracy of TAN classifier, a discriminative method based on Kullback-Leibler (KL) divergence is proposed. Explaining away residual (EAR) method is used to learn the structure of TAN, and then the TAN parameters are obtained by an objective function based on KL divergence. The experimental results on benchmark datasets show that the proposed method can get relatively high classification rates.
Key wordsTree-Augmented Nave Bayes (TAN) Classifier      Discriminative Learning      Kullback-Leibler (KL) Divergence      Explaining Away Residual (EAR)     
Received: 01 June 2007     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
FENG Qi
TIAN Feng-Zhan
HUANG Hou-Kuan
Cite this article:   
FENG Qi,TIAN Feng-Zhan,HUANG Hou-Kuan. Discriminative Learning of TAN Classifier Based on KL Divergence[J]. , 2008, 21(6): 806-811.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I6/806
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn