模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2008, Vol. 21 Issue (6): 836-842    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Facial Expression Recognition Using an Improved Embedded HMM
ZHENG Fang-Ying1,2, ZHAO Jie-Yu1
1.Research Institute of Computer Science and Technology, Ningbo University, Ningbo 3152112.
Network Center, Ningbo University, Ningbo 315211

Download: PDF (1057 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  An embedded hidden markov model (e-HMM) based approach for facial expression recognition is proposed. It makes use of an optimized set of observation vectors obtained from the 2D-DCT coefficients of the facial region of interest. The e-HMM is trained with segmental K-means algorithm and used for the facial expression recognition. The experimental results show the remarkable improvement of the performance and robustness of the facial expression recognition system.
Key wordsEmbedded Hidden Markov Model (e-HMM)      Affective Computing      Facial Feature Extraction     
Received: 28 May 2007     
ZTFLH: TP391.41  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHENG Fang-Ying
ZHAO Jie-Yu
Cite this article:   
ZHENG Fang-Ying,ZHAO Jie-Yu. Facial Expression Recognition Using an Improved Embedded HMM[J]. , 2008, 21(6): 836-842.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2008/V21/I6/836
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn