模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2015, Vol. 28 Issue (6): 490-498    DOI: 10.16451/j.cnki.issn1003-6059.201506002
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
The HGSD Method for Consumption Sentiment Classification
LIN Ming-Ming1, QIU Yun-Fei1, SHAO Liang-Shan2
1.School of Software, Liaoning Technical University, Huludao 125100
2.System Engineering Institute, Liaoning Technical University, Huludao 125100

Download: PDF (517 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the sentiment classification for Chinese consumption comments, a sentiment classification method combining dictionary semantic concept and context semanteme is proposed. Firstly, a method of extracting benchmark words set of different domains is put forword. Then, the sentiment words are extracted through the similarity of HowNet based on the unigram model. Finally, HowNet and Google similarity distance (HGSD) combining the HowNet similarity and the Google similarity distance is presented to classify the sentences, which reflects the original meaning of the word and the meaning in the context. Experiments of consumption comments on books, computers and hotels show the higher F-measure of the proposed method, and meanwhile the contrast experiment shows the effectiveness of the proposed algorithm.
Key wordsDictionary Semantic      Context Semantic      Sentiment Classification      HowNet      Google Similarity Distance     
Received: 15 January 2014     
ZTFLH: TP391.1  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIN Ming-Ming
QIU Yun-Fei
SHAO Liang-Shan
Cite this article:   
LIN Ming-Ming,QIU Yun-Fei,SHAO Liang-Shan. The HGSD Method for Consumption Sentiment Classification[J]. , 2015, 28(6): 490-498.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/10.16451/j.cnki.issn1003-6059.201506002      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2015/V28/I6/490
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn