模式识别与人工智能
Wednesday, Apr. 16, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (3): 394-398    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Improved Kernel Minimum Squared Error Method and Its Implementations
XU Yong1, LU JianFeng2, JIN Zhong2, YANG JingYu2
1.Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055
2.Department of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094

Download: PDF (328 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  On the basis of the fact that the discriminant vector of the feature space associated with the kernel minimum squared error (KMSE) model can be expressed in terms of a linear combination of samples selected from all the training samples, the idea of variable selection can be exploited to improve the KMSE model. To improve the classification efficiency, an algorithm based on the minimum square error criterion is proposed. It classifies test samples efficiently. Experiments show that the proposed method also has good classification performance.
Key wordsKernel Fisher Discriminant Analysis (KFDA)      Kernel Minimum Squared Error (KMSE)      Discriminant Vector      Pattern Recognition     
Received: 09 February 2006     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
XU Yong
LU JianFeng
JIN Zhong
YANG JingYu
Cite this article:   
XU Yong,LU JianFeng,JIN Zhong等. Improved Kernel Minimum Squared Error Method and Its Implementations[J]. , 2007, 20(3): 394-398.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I3/394
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn