模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (4): 558-564    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Hierarchical Fuzzy MinMax Clustering Algorithm
YANG Jing1, GAO Jun1,2, XU XiaoHong1, LIU Xu1
1.Laboratory of Image Information Processing, School of Computer and Information, Hefei University of Technology, Hefei 230009
2.Center of Biomimetic Sensing and Control Research, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031

Download: PDF (411 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Clustering is considered as the most important problem of unsupervised learning. A Hierarchical Fuzzy MinMax Clustering Algorithm (HFMM) is presented based on the original Fuzzy MinMax Clustering Neural Network (FMMCN) and hierarchical clustering. Compared with the existing methods for clustering, the proposed algorithm dynamically determines the number of clusters to meet the demands of the problem. Moreover it overcomes the shortcomings of FMMCNorder dependent. Experimental results on three databases demonstrate that HFMM has high clustering performance.
Key wordsUnsupervised Learning      Clustering      Fuzzy MinMax Clustering Neural Network (FMMCN)      Hierarchical Fuzzy MinMax Clustering (HFMM)     
Received: 21 March 2006     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG Jing
GAO Jun
XU XiaoHong
LIU Xu
Cite this article:   
YANG Jing,GAO Jun,XU XiaoHong等. Hierarchical Fuzzy MinMax Clustering Algorithm[J]. , 2007, 20(4): 558-564.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I4/558
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn