模式识别与人工智能
Sunday, Apr. 13, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2007, Vol. 20 Issue (5): 716-721    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
A ShrinkingClustering Method for High Dimensional Data Using Flexible Size Grid
ZHANG JianYe1, PAN Quan1, LIANG JianHai2
1. School of Automation, Northwestern Polytechnical University, Xi’an 710072
2.Institute of Engineering, Air Force Engineering University, Xi’an 710038

Download: PDF (532 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A shrinkingclustering method using flexible size grid is proposed to solve the clustering problem of high dimensional data in data mining. The data bins are arranged according to their density span, and the data points are moved along the direction of the density gradient. Thus the condensed and widelyseparated clusters are generated. Then the connected components of dense cells are detected using a sequence of grids with flexible size. Finally, the best clustering result is obtained when the borderline does not change again. The simulation result shows that the method could detect clusters effectively and efficiently in both low and high dimensional data.
Key wordsShrinkingClustering      Dense Span      Flexible Size Grid      Data Bin     
Received: 14 August 2006     
ZTFLH: O23  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG JianYe
PAN Quan
LIANG JianHai
Cite this article:   
ZHANG JianYe,PAN Quan,LIANG JianHai. A ShrinkingClustering Method for High Dimensional Data Using Flexible Size Grid[J]. , 2007, 20(5): 716-721.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2007/V20/I5/716
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn