模式识别与人工智能
Monday, Apr. 7, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2006, Vol. 19 Issue (2): 208-214    DOI:
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Pattern Growth Method for Mining Embedded Frequent Trees
MA HaiBing1,2, LI RongLu1, HU YunFa1
1.Department of Computer and Information Technology, Fudan University, Shanghai 200433
2.Shanghai Branch of PLA Nanjing Political College, Shanghai 200433

Download: PDF (404 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  In this paper, an efficient pattern growth algorithm for mining frequent embedded subtrees in rooted, labeled, and ordered trees is presented. It uses rightmost path expansion schema to construct complete pattern growth space, and creats a projection database for every grow point of the treepattern. So the problem is transformed from mining frequent trees to finding frequent nodes in the projected database. Thus the complexity of the algorithm is considerably reduced. Experimental results show that it is efficient for both time and space.
Key wordsData Mining      Frequent Pattern      Pattern Growth      Frequent SubTree     
Received: 13 September 2004     
ZTFLH: TP311  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
MA HaiBing
LI RongLu
HU YunFa
Cite this article:   
MA HaiBing,LI RongLu,HU YunFa. Pattern Growth Method for Mining Embedded Frequent Trees[J]. , 2006, 19(2): 208-214.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2006/V19/I2/208
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn