模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2006, Vol. 19 Issue (3): 312-317    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
An Optimal Method on Uncorrelated Discriminant Vectors Based on Perturbation Analysis
WANG WeiDong1,2, ZHENG YuJie1, YANG JingYu1
1.Department of Computer Science, Nanjing University of Science and Technology, Nanjing 210094
2.School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003

Download: PDF (337 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  This paper, on the basis of uncorrelated image projection discriminant analysis, focuses on perturbation features of eigenvalue and eigenvector, pointing out eigenvector of morbid eigenvalue may be perturbed to a great degree. So, if the eigenvector is used as a projection axis to project, the feature vectors achieved cannot provide valid discriminant information. Therefore, an optimal method to uncorrelated discriminant vectors is proposed in this paper. And the method is tested on ORL face database. The experimental results indicate the method can simplify projection matrix, improve the efficiency of features extraction and then make the recognition ratio robust. Moreover, this paper suggests the optimal method based on perturbation analysis is suitable for optimizing other linear discriminant vectors.
Key wordsPerturbation Analysis      Optimal Method      Image Projection Discriminant Analysis      Optimal Discriminant Vectors      Feature Extraction      Face Recognition     
Received: 28 February 2005     
ZTFLH: TP391.4  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG WeiDong
ZHENG YuJie
YANG JingYu
Cite this article:   
WANG WeiDong,ZHENG YuJie,YANG JingYu. An Optimal Method on Uncorrelated Discriminant Vectors Based on Perturbation Analysis[J]. , 2006, 19(3): 312-317.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2006/V19/I3/312
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn