模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2006, Vol. 19 Issue (4): 475-480    DOI:
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Pareto Archive MultiObjective Particle Swarm Optimization
LEI DeMing1,2, WU ZhiMing2
1.School of Automation, Wuhan University of Technology, Wuhan 430070
2.Institute of Automation, Shanghai Jiaotong University, Shanghai 200030

Download: PDF (440 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Pareto archive multiobjective particle swarm optimization (PAMOPSO) is designed, in which the improved method of strength Pareto evolutionary algorithm 2 (SPEA2) is used to maintain external archive and the global best location for each particle is selected in the procedure of archive maintenance. PAMOPSO is applied to five test instances and compared with other three multiobjective optimization algorithms. The computational results demonstrate that PAMOPSO has good performance in multiobjective optimization.
Key wordsExternal Archive      MultiObjective Optimization      Evolutionary Algorithm      Searching      Particle Swarm Optimization     
Received: 27 December 2004     
ZTFLH: TP301  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LEI DeMing
WU ZhiMing
Cite this article:   
LEI DeMing,WU ZhiMing. Pareto Archive MultiObjective Particle Swarm Optimization[J]. , 2006, 19(4): 475-480.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2006/V19/I4/475
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn