|
|
Disturbing-Valued Fuzzy Finite-State Automata and Their Languages |
PENG Jiayin |
School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100 |
|
|
Abstract The concepts of disturbing-valued fuzzy finite-state automata and their languages are introduced. The extension of state transition function for disturbing-valued fuzzy finite-state automata is discussed. The non-deterministic disturbing-valued fuzzy finite-state automata and three kinds of deterministic disturbing-valued fuzzy finite-state automata are equivalent to each other. The closeness of the languages families of disturbing-valued fuzzy finite-state automata under regular operations are studied.
|
Received: 18 August 2015
|
|
Fund:Supported by National Natural Science Foundation of China (No.11071178), Comprehensive Reform Project of Mathematics and Applied Mathematics of Ministry of Education of China (No.ZG0464), Key Science and Technology Project of the Science and Technology Department of Sichuan Province (No.2006J13-035), Comprehensive Reform Project of Mathematics and Applied Mathematics of Education Department of Sichuan Province (No.1249), Quality Open Course of Analytic Geometry of the Education Department of Sichuan Province, 2012 Excellent Resource Sharing Course of Neijiang Normal University, Key Discipline for Applied Mathematics in Neijiang Normal University, Excellent Teacher Training Program of Neijiang Normal University |
About author:: (PENG Jiayin, born in 1962, Ph. D. , professor. His research interests include fuzzy mathematics and artificial intelligence. ) |
|
|
|
[1] ZADEH L A. Fuzzy Sets. Information and Control, 1965, 8(3):338-353. [2] ATANASSOV K T. Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 1986, 20(1): 87-96. [3] GAU W L, BUEHRER D J. Vague Sets. IEEE Trans on Systems, Man, and Cybernetics, 1993, 23(2): 610-614. [4] ZADEH L A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning. Information Sciences, 1975, 8(3):199-249. [5] 王元元.计算机科学中的现代逻辑学.北京:科学出版社, 2001. (WANG Y Y. Modern Logic in Computer Science. Beijing, China:Science Press, 2001.) [6] LIN T L. A Set Theory for Soft Computing: A Unified View of Fuzzy Sets via Neighborhoods // Proc of the 5th IEEE International Conference on Fuzzy Systems. New Orleans, USA, 1996, II: 1140-1146. [7] YING M S. Perturbation of Fuzzy Reasoning. IEEE Trans on Fuzzy Systems, 1999, 7(5): 625-629. [8] 刘 心,陈图云.扰动模糊逻辑及其“非”算子.模糊系统与数学,2002, 16(2): 179-182. (LIU X, CHEN T Y. Disturbancy Fuzzy Logic and Its Negative Operators. Fuzzy Systems and Mathematics, 2002, 16(2): 179-182.) [9] HOPCROFT J E, MOTWANI R, ULLMAN J D. Introduction to Automata Theory, Languages, and Computation. New York, USA: Addision-Wesley, 1979. [10] ALON N, DEWDNEY A K, OTT T J. Efficient Simulation of Finite Automata by Neural Nets. Journal of the ACM, 1991, 38(2): 495-514. [11] 沈恩绍.模型论逻辑与理论计算机科学.数学进展, 1996, 25(3): 193-202. (SHEN E S. Model Theoretic Logic and Theoretical Computer Science. Advance in Mathematics, 1996, 25(3): 193-202.) [12] WEE W G. On Generalizations of Adaptive Algorithms and Application of the Fuzzy Sets Concept to Pattern Classification. Ph. D Dissertation. Westlafayett, India: Purdue University, 1967. [13] MORDESON J N, MALIK D S. Fuzzy Automata and Languages: Theory and Applications. Boca Raton, UK: Chapman and Hall 2002. [14] SANTOS E S. Maximin Automata. Information and Control, 1968,13(4): 363-377. [15] THOMASON M G, MARINOS P N. Deterministic Acceptors of Regular Fuzzy Languages. IEEE Trans on Systems, Man, and Cybernetics, 1974, SMC-4(2): 228-230. [16] 彭家寅.关于属性G-(g-)量子文法与属性量子自动机.四川师范大学学报(自然科学版), 2002, 25(2): 168-170. (PENG J Y. On Attributed G-(g-) Quantum Grammars and Attributed Quantum Automata. Journal of Sichuan Normal University(Natural Science), 2002, 25(2): 168-170.) [17] 柏明强.Fuzzy树自动机的等价性.四川师范大学学报(自然科学版), 2009, 32(l): 13-16. (BAI M Q. The Equivalence on Two kinds of Fuzzy Tree Automata. Journal of Sichuan Normal University (Natural Science), 2009, 32(1): 13-16.) [18] PEEVA K. Equivalence, Reduction and Minimization of Finite Automata over Semirings. Theoretical Computer Science, 1991, 88(2): 269-285. [19] 彭家寅.Fuzzy 2型属性文法与Fuzzy属性下推自动机.四川师范大学学报(自然科学报), 1999, 22(3): 260-264. (PENG J Y. Relation between a Fuzzy 2-Type Attributed Grammar and a Fuzzy Attributed Pushdown Automata. Journal of Sichuan Normal University (Natural Science), 1999, 22(3): 260-264.) [20] LIU J, MO Z W, QIU D, et al. Products of Mealy-Type Fuzzy Finite State Machines. Fuzzy Sets and Systems, 2009,160(16):2401-2415. [21] 邱道文.基于完备剩余格值逻辑的自动机理论——I.拓扑刻画.中国科学(E辑), 2003, 33(2): 137-146. (QIU D W. Automata Theory Based on Complete Residuated Lattice-Valued Logic I. Science in China (Series E), 2003, 33(2):137-146.) [22] 邱道文.基于完备剩余格值逻辑的自动机理论——II.可逆性及同态. 中国科学(E辑), 2003, 33(4): 340-349. (QIU D W. Automata Theory Based on Complete Residuated Lattice-Valued Logic II. Science in China (Series E), 2003, 33(4): 340-349.) [23] 彭家寅.基于完备剩余格值逻辑的自动机理论与文法理论.模式识别与人工智能, 2011, 24(5): 610-618. (PENG J Y. Automata and Grammars Theory Based on Complete Residuated Lattice-Valued Logic. Pattern Recognition and Artificial Intelligence, 2011, 24(5): 610-618.) [24] 李永明.格值自动机与语言.陕西师范大学学报(自然科学版), 2003, 31(4): l-6. (LI Y M. Lattice-Valued Automata and Their Languages. Journal of Shaanxi Normal University(Natural Science Edition), 2003, 31(4): 1-6.) [25] 彭家寅.格值下推自动机与格值上下文无关文法.计算机工程与应用, 2011, 47(25): 34-38. (PENG J Y. Lattice-Valued Pushdown Automata and Lattice-Valued Context-Free Grammars. Computer Engineering and Applications, 2011, 47(25): 34-38.) [26] YING M S. Automata Theory Based on Quantum Logic I. International Journal of Theoretical Physics, 2000, 39(4): 985-995. [27] YING M S. Automata Theory Based on Quantum Logic II. International Journal of Theoretical Physics, 2000, 39(11): 2545-2557. [28] QIU D W. Automata Theory Based on Quantum Logic: Some Characterizations. Information and Computation, 2004, 190(2): 179-195. [29] CHENG W, WANG J. Grammar Theory Based on Quantum Logic. International Journal of Theoretical Physics, 2003, 42(8): 1677-1691. [30] SHANG Y, LU X, LU R Q. Automata Theory Based on Unsharp Quantum Logic. Mathematical Structures in Computer Science, 2009, 19(4): 737-756. [31] 彭家寅.基于Unsharp量子逻辑的自动机和文法理论.计算机工程与应用, 2012, 48(28): 57-60. (PENG J Y. Automata and Grammars Theory Based on Unsharp Quantum Logic. Computer Engineering and Applications, 2012, 48(28): 57-60.) [32] JUN Y B. Intuitionistic Fuzzy Finite State Machines. Journal of Applied Mathematics and Computing, 2005, 17(1): 109-120. [33] CHOUBEY A, RAVI K M. Minimization of Deterministic Finite Automata with Vague (Final) States and Intuitionistic Fuzzy (Final) States. Iranian Journal of Fuzzy Systems, 2013, 10(l): 75-88. [34] JUN Y B, KAVIKUMAR J. Bipolar Fuzzy Finite State Machines. Bulletin of the Malaysian Mathematical Sciences Society, 2011, 34(1): 181-188. [35] RAVI K M, CHOUBEY A. Vague Regular Language. Advances in Fuzzy Mathematics, 2009, 4(2): 149-165. [36] 韩 莹.扰动模糊理论及其在推理决策中的应用.博士学位论文.南京:东南大学, 2009. (HAN Y. Disturbance Fuzzy Theory and Its Application in Reasoning and Decision Making. Ph. D Dissertation. Nanjing, China: Southeast University, 2009.) [37] 韩 莹,陈森发,陈 胜.TD型扰动值模糊正规子群.模糊系统与数学, 2006, 20(5): 25-29. (HAN Y, CHEN S F, CHEN S. The TD-Disturbing-Valued Fuzzy Normal Subgroup. Fuzzy Systems and Mathematics, 2006, 20(5):25-29.) [38] 陈图云,孟艳平.扰动模糊集相似度限定推理方法.辽宁工程技 术大学学报, 2004, 23(4): 564-566. (CHEN T Y, MENG Y P. Reasoning Method by Similarity Degree of Disturbing Fuzzy Sets. Journal of Liaoning Technical University, 2004, 23(4): 564-566.) [39] 李金宗.模式识别导论.北京:高等教育出版社, 1994. (LI J Z. An Introduction on Pattern Recognition. Beijing, China:Higher Education Press, 1994.) |
|
|
|