|
|
Parallel Data: From Big Data to Data Intelligence |
LIU Xin1, WANG Xiao2,3, ZHANG Weishan2, WANG Jianji4, WANG Feiyue2,3,5 |
1.College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580 2.The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 3.Parallel Workshop, Qingdao Academy of Intelligent Industries, Qingdao 266111 4.Institute of Artificial Intelligence and Robotics, Xi′an Jiaotong University, Xi′an 710049 5.Research Center of Military Computational Experiments and Parallel Systems,National University of Defense Technology, Changsha 410073 |
|
|
Abstract For many real world applications, data available from actual scenes are generally incomplete and conditional. Therefore, a mechanism of generating big data from small data and then producing small but precise knowledge for specific problems is extremely useful. To this end, the concept and the framework of parallel data are proposed and discussed. Parallel data consist of virtual data from experimental computing and real data collected for actual problems. Actual and virtual data interact and co-evolute in parallel, making virtual and actual complement, thus enabling the process of transferring big data to data intelligence for general problem solving. Parallel data is not only a new data representation method, but also a new mechanism for data generalization and evolution. The dynamic trajectories of all data constitute a data dynamic system, and provide a new paradigm for data processing, representation, mining, and applications.
|
Received: 28 July 2017
|
|
About author:: (LIU Xin, born in 1974, Ph.D., associate professor. Her research interests include complex data analysis, data mining, social computing, and cyber security.) (WANG Xiao, born in 1988, Ph.D., assistant researcher. Her research interests include social computing, knowledge automation, knowledge robots, social transportation, and parallel intelligence.) (ZHANG Weishan, born in 1970, Ph.D., professor. His research interests include big data processing and software engineering.) (WANG Jianji, born in 1981, Ph.D., lecturer. His research interests include big data processing, image processing, and machine learning.) (WANG Feiyue(Corresponding author), born in 1961, Ph.D., professor. His research interests include modeling, analysis, management and control of intelligent systems and complex systems, social computing, parallel intelligence.) |
|
|
|
[1] WANG F Y, CARLEY K M, ZENG D, et al. Social Computing: From Social Informatics to Social Intelligence. IEEE Intelligent Systems, 2007, 22(2): 79-83. [2] CHEN C L P, ZHANG C Y. Data-Intensive Applications, Challenges, Techniques and Technologies: A Survey on Big Data. Information Sciences, 2014, 275: 314-347. [3] WANG F Y. Moving Towards Complex Intelligence? IEEE Intelligent Systems, 2009, 24(4): 2-4. [4] HEY T, TANSLEY S, TOLLE K. The Fourth Paradigm: Data-Intensive Scientific Discovery[M/OL]. [2017-05-20]. https://www.immagic.com/eLibrary/ARCHIVES/EBOOKS/M091000H.pdf. [5] 吴信东,何 进,陆汝钤,等.从大数据到大知识: HACE + BigKE.自动化学报, 2016, 42(7): 965-982. (WU X D, HE J, LU R Q, et al. From Big Data to Big Know-ledge: HACE + BigKE. Acta Automatica Sinica, 2016, 42(7): 965-982.) [6] 汪建基,马永强,陈仕涛,等.碎片化知识处理与网络化人工智能.中国科学(信息科学), 2017, 47(2): 171-192. (WANG J J, MA Y Q, CHEN S T, et al. Fragmentation Know-ledge Processing and Networked Artificial Intelligence. Scientia Sinica(Informationis), 2017, 47(2): 171-192.) [7] WANG F Y. A Big-Data Perspective on AI: Newton, Merton, and Analytics Intelligence. IEEE Intelligent Systems, 2012, 27(5): 2-4. [8] ORACLE. The Five Most Common Big Data Integration Mistakes To Avoid[J/OL]. [2017-05-20]. https://www.oracle.com/assets/big-data-integration-mistakes-wp-2492054.pdf. [9] MELNIK S, GUBAREV A, LONG J J, et al. Dremel: Interactive Analysis of Web-Scale Datasets. Theo Vassilakis Communications of the ACM, 2010, 54(6): 114-123. [10] BEAVER D, KUMAR S, LI H C, et al. Finding a Needle in Haystack: Facebook′s Photo Storage[C/OL]. [2017-05-20]. https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf. [11] 王飞跃,史帝夫·兰森.从人工生命到人工社会——复杂社会系统研究的现状和展望.复杂系统与复杂性科学, 2004, 1(1): 33-41. (WANG F Y, LANSING J S. From Artificial Life to Artificial Societies: New Methods for Studies of Complex Social Systems. Complex Systems and Complexity Science, 2004, 1(1): 33-41.) [12] 王飞跃.平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5): 485-489. (WANG F Y. Parallel System Methods for Management and Control of Complex Systems. Control and Decision, 2004, 19(5): 485-489.) [13] 王飞跃.关于复杂系统研究的计算理论与方法.中国基础科学, 2004, 6(5): 3-10. (WANG F Y. Computing Theory and Method for Complex Systems Research. China Basic Science, 2004, 6(5): 3-10.) [14] 王飞跃.人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论.复杂系统与复杂性科学, 2004, 1(4): 25-35. (WANG F Y. Artificial Societies, Computational Experiments and Parallel Systems: A Discussion on Computational Theory of Complex Social-Economic Systems. Complex System and Complexity Science, 2004, 1(4): 25-35.) [15] TEGMAR K M. Parallel Universes. Scientific American, 2003, 288(5): 40-51. [16] WEN D, YUAN Y, LI X K. Artificial Societies, Computational Experiments, and Parallel Systems: An Investigation on a Computational Theory for Complex Socio-Economic Systems. IEEE Transactions on Services Computing, 2013, 6(2): 177-185. [17] ZHANG N, WANG F Y, ZHU F H, et al. DynaCAS: Computational Experiments and Decision Support for ITS. IEEE Intelligent Systems, 2008, 23(6): 19-23. [18] WANG F Y. Parallel Control and Management for Intelligent Transportation Systems: Concepts, Architectures, and Applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 630-638. [19] 宁 滨,王飞跃,董海荣,等.高速铁路平行控制与管理系统研究框架.复杂系统与复杂性科学, 2010, 7(4): 11-21. (NING B, WANG F Y, DONG H R, et al. Framework of Parallel Control and Management for High-Speed Railway Systems. Complex Systems and Complexity Science, 2010, 7(4): 11-21.) [20] WANG F Y. Parallel Driving with Software Vehicular Robots for Safety and Smartness. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1386-1387. [21] WANG F Y, ZHENG N N, CAO D P, et al. Parallel Driving in CPSS: A Unified Approach for Transport Automation and Vehicle Intelligence. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 577-587. [22] WANG F Y, YANG L Q, YANG J, et al. Urban Intelligent Par-king System Based on the Parallel Theory // Proc of the International Conference on Computing, Networking and Communications. Washington, USA: IEEE, 2016. DOI: 10.1109/ICCNC.2016.7440708. [23] LI L, WEN D. Parallel Systems for Traffic Control: A Rethinking. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 1179-1182. [24] L Y S, CHEN Y Y, ZHANG X Q, et al. Social Media Based Transportation Research: the State of the Work and the Networking. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1): 19-26. [25] L Y S, DUAN Y J, KANG W W, et al. Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873. [26] LI L, L Y S, WANG F Y. Traffic Signal Timing via Deep Reinforcement Learning. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 247-254. [27] DUAN Y J, L Y S, LIU Y L, et al. An Efficient Realization of Deep Learning for Traffic Data Imputation. Transportation Research Part C(Emerging Technoligies), 2016, 72: 168-181. [28] L Y S, ZHANG X Q, KANG W W, et al. Managing Emergency Traffic Evacuation with a Partially Random Destination Allocation Strategy: A Computational-Experiment-Based Optimization Approach. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2182-2191. [29] DUAN Y J, L Y S, WANG F Y. Travel Time Prediction with LSTM Neural Network // Proc of the 19th IEEE International Conference on Intelligent Transportation Systems. Washington, USA: IEEE, 2016: 1053-1058. [30] WANG F Y, WANG X, LI L X, et al. Steps toward Parallel Inte-lligence. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4): 345-348. [31] 王飞跃,邱晓刚,曾大军,等.基于平行系统的非常规突发事件计算实验平台研究.复杂系统与复杂性科学, 2010, 7(4): 1-10. (WANG F Y, QIU X G, ZENG D J, et al. A Computational Experimental Platform for Emergency Response Based on Parallel Systems. Complex Systems and Complexity Science, 2010, 7(4): 1-10.) [32] 王飞跃.软件定义的系统与知识自动化:从牛顿到莫顿的平行升华.自动化学报, 2015, 41(1): 1-8. (WANG F Y. Software-Defined Systems and Knowledge Automation: A Parallel Paradigm Shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1): 1-8.) [33] WANG F Y, ZHANG J J, ZHENG X H, et al. Where Does AlphaGo Go: from Church-Turing Thesis to AlphaGo Thesis and Beyond. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2):113-120. [34] 王飞跃.基于社会计算和平行系统的动态网民群体研究.上海理工大学学报, 2011, 33(1): 8-17. (WANG F Y. Study on Cyber-Enabled Social Movement Organizations Based on Social Computing and Parallel Systems. Journal of University of Shanghai for Science and Technology, 2011, 33(1): 8-17.) [35] 王飞跃,王 晓,袁 勇,等.社会计算与计算社会:智慧社会的基础与必然.科学通报, 2015, 60(5/6): 460-469. (WANG F Y, WANG X, YUAN Y, et al. Social Computing and Computational Societies: The Foundation and Consequence of Smart Societies. Chinese Science Bulletin, 2015, 60(5/6): 460-469.) [36] WANG X, LI L X, YUAN Y, et al. ACP-Based Social Computing and Parallel Intelligence: Societies 5.0 and Beyond. CAAI Transactions on Intelligence Technology, 2016, 1(4): 377-393. [37] WANG X, ZHENG X H, ZHANG X Z, et al. Analysis of Cyber Interactive Behaviors Using Artificial Community and Computatio-nal Experiments. IEEE Transactions on Systems, Man, and Cybernetics(Systems), 2017, 47(6): 995-1006. [38] KANG M Z, WANG F Y. From Parallel Plants to Smart Plants: Intelligent Control and Management for Plant Growth. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 161-166. [39] 王坤峰,苟 超,王飞跃.平行视觉:基于ACP 的智能视觉计算方法.自动化学报, 2016, 42(10): 1490-1500. (WANG K F, GOU C, WANG F Y. Parallel Vision: An ACP-Based Approach to Intelligent Vision Computing. Acta Automatica Sinica, 2016, 42(10): 1490-1500.) [40] 王坤峰,鲁 越,王雨桐,等.平行图像:图像生成的一个新型理论框架.模式识别与人工智能, 2017, 30(7): 577-587. (WANG K F, LU Y, WANG Y T, et al. Parallel Imaging: A New Theoretical Framework for Image Generation. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 577-587.) [41] WANG K F, GOU C, ZHENG N N, et al. Parallel Vision for Perception and Understanding of Complex Scenes: Methods, Framework, and Perspectives. Artificial Intelligence Review, 2017, 48(3): 298-328. [42] 李 力,林懿伦,曹东璞,等.平行学习——机器学习的一个新型理论框架.自动化学报, 2017, 43(1): 1-8. (LI L, LIN Y L, CAO D P, et al. Parallel Learning-A New Framework for Machine Learning. Acta Automatica Sinica, 2017, 43(1): 1-8.) [43] LI L, LIN Y L, ZHENG N N, et al. Parallel Learning: A Perspective and a Framework. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3): 389-395. [44] 白天翔, 王 帅,沈 震,等.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2): 161-175. (BAI T X, WANG S, SHEN Z, et al. Parallel Robotics and Pa-rallel Unmanned Systems: Framework, Structure, Process, Platform and Applications. Acta Automatica Sinica, 2017, 43(2): 161-175.) [45] 段艳杰,吕宜生,张 杰,等.深度学习在控制领域的研究现状与展望.自动化学报, 2016, 42(5): 643-654. (DUAN Y J, L Y S, ZHANG J, et al. Deep Learning for Control: The State of the Art and Prospects. Acta Automatica Sinica, 2016, 42(5): 643-654.) [46] ZAHNG J, LI L J, WANG F Y. A Probabilistic Mechanism Design for Online Auctions. IEEE Access, 2017, 5(5): 10782-10794. [47] YUAN Y, WANG F Y, ZENG D L. Developing a Cooperative Bidding Framework for Sponsored Search Markets-An Evolutionary Perspective. Information Sciences, 2016, 369(C): 674-689. [48] QIN R, YUAN Y, WANG F Y. Exploring the Optimal Granularity for Market Segmentation in RTB Advertising via Computational Experiment Approach. Electronic Commerce Research and Applications, 2017, 24: 68-83. [49] 王飞跃, 曾大军,袁 勇.基于ACP方法的电子商务系统复杂性研究.复杂系统与复杂性科学, 2008, 5(3): 1-8. (WANG F Y, ZENG D J, YUAN Y. An ACP-Based Approach for Complexity Analysis of E-commerce System. Complex Systems and Complexity Science, 2008, 5(3): 1-8.) [50] YUAN Y, ZENG D. Co-Evolution-Based Mechanism Design for Sponsored Search Advertising. Electronic Commerce Research and Applications, 2012, 11(6): 537-547. [51] RADFORD A, METZ L, CHINTALA S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C/OL].[2017-05-20]. https://arxiv.org/pdf/1511.06434v2.pdf. [52] 王坤峰,苟 超,段艳杰,等.生成式对抗网络GAN 的研究进展与展望.自动化学报, 2017, 43(2): 321-332. (WANG K F, GOU C, DUAN Y J, et al. Generative Adversarial Networks: The State of the Art and Beyond. Acta Automatica Sinica, 2017, 43(3): 321-332.) [53] 袁 勇,王飞跃.区块链技术发展现状与展望.自动化学报. 2016, 42(4): 481-494. (YUAN Y, WANG F Y. Blockchain: The State of the Art and Future Trends. Acta Automatica Sinica, 2016, 42(4): 481-494.) [54] WANG J J, ZHENG N N. A Novel Fractal Image Compression Scheme with Block Classification and Sorting Based on Pearson's Correlation Coefficient. IEEE Transactions on Image Processing, 2013, 22(9): 3690-3702. [55] WANG F Y, YANG L Q, CHENG X, et al. Network Softwarization and Parallel Networks: Beyond Software-Defined Networks. IEEE Network, 2016, 30(4): 60-65. [56] WANG F Y, ZHANG J, WEI Q L, et al. PDP: Parallel Dynamic Programming. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1): 1-5. [57] HU S G, SHAN L D, XU J R. Characteristics of Big-Data-Based Smart Public Decision Making. Journal of Zhejiang University(Humanities and Social Sciences), 2015, 45(3): 5-15. [58] WANG F Y. Toward a Paradigm Shift in Social Computing: The ACP Approach. IEEE Intelligent Systems, 2007, 22(5): 65-67. [59] 袁 勇,周 涛,周傲英,等. 区块链技术:从数据智能到知识自动化[EB/OL]. [2017-07-21]. http://blog.sciencenet.cn/blog-951291-1067435.html. (YUAN Y, ZHOU T, ZHOU A Y, et al. Block Chain Technology: From Data Intelligence to Knowledge Automation[EB/OL]. [2017-07-21]. http://blog.sciencenet.cn/blog-951291-1067435.html.) [60] ZHANG Q P, WANG F Y, ZENG D, et al. Understanding Crowd-Powered Search Groups: A Social Network Perspective. PLoS One, 2012, 7(6). DOI: 10.1371/journal.pone.0039749. [61] GOU C, WU Y, WANG K, et al. A Joint Cascaded Framework for Simultaneous Eye Detection and Eye State Estimation. Pattern Recognition, 2017, 67(1): 23-31. [62] GABOR T, BELZNER L, KIERMEIER M, et al. A Simulation-Based Architecture for Smart Cyber-Physical Systems // Proc of the IEEE International Conference on Autonomic Computing. Washington, USA: IEEE, 2016: 374-379. [63] GLAESSGEN E H, STARGEL D S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles[C/OL]. [2017-05-21]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120008178.pdf. [64] WANG F Y. The Emergence of Intelligent Enterprises: From CPS to CPSS. IEEE Intelligent Systems, 2010, 25(4): 85-88. [65] ZHANG W S, XU L, DUAN P C, et al. A Video Cloud Platform Combing Online and Online Cloud Computing Technologies. Personal and Ubiquitous Computing, 2015, 19(7): 1099-1110. [66] ZHANG W S, XU L, LI Z W, et al. A Deep-Intelligence Framework for Online Video Processing. IEEE Software, 2016, 33(2): 44-51. |
|
|
|