模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2017, Vol. 30 Issue (11): 1048-1056    DOI: 10.16451/j.cnki.issn1003-6059.201711010
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Rule Acquisition Algorithm for Neighborhood Multi-granularity Rough Sets Based on Maximal Granule
CHEN Jingwen1, MA Fumin1, ZHANG Tengfei2, ZENG Yonggang1
1.College of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210023
2.School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023

Download: PDF (602 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Granular computing based rule acquisition algorithms remedy the defects of rule acquisition algorithms to some extent. However, most of these algorithms can merely deal with categorical data. To further process the numerical or mixed data from the perspective of multi-granularity and multi-level, the neighborhood multi-granularity rough set model is adopted. Through calculating neighborhood multi-granularity condition granules and decision granules, the redundancy relation of condition granules in the process of rule acquisition is analyzed, and thus the redundant condition granules are further pruned. A rule acquisition algorithm for neighborhood multi-granularity rough set based on maximal granule is developed. The validity and superiority of the proposed algorithm are demonstrated by theoretical analysis and comparable experiments.
Key wordsNeighborhood Multi-granularity      Rough Set      Rule Acquisition      Granular Computing     
Received: 31 July 2017     
ZTFLH: TP 18  
Fund:Supported by National Natural Science Foundation of China(No.61403184,61105082), Major Program of Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.17KJA120001), Qing Lan Project of Jiangsu Province(No.QL2016), Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(No.PAPD), Graduate Student Scientific Research Innovation Project of Jiangsu Province(No.KYCX17_1210), "1311 Talent Plan" of Nanjing University of Posts and Telecommunications(No.NY2013)
About author:: 陈静雯,女,1993年生,硕士研究生,主要研究方向为粒计算、智能信息处理.E-mail:386549776@qq.com.
马福民(通讯作者),女,1979年生,博士,副教授,主要研究方向为智能信息处理、智能生产系统等.E-mail:fmmatj@126.com.
张腾飞,男,1980年生,博士,教授,主要研究方向为智能信息处理、大数据分析等.E-mail:tfzhang@126.com.
曾永钢,男,1994年生,硕士研究生,主要研究方向为数据挖掘、智能信息处理.E-mail:284764531@qq.com.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
CHEN Jingwen
MA Fumin
ZHANG Tengfei
ZENG Yonggang
Cite this article:   
CHEN Jingwen,MA Fumin,ZHANG Tengfei等. Rule Acquisition Algorithm for Neighborhood Multi-granularity Rough Sets Based on Maximal Granule[J]. , 2017, 30(11): 1048-1056.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/10.16451/j.cnki.issn1003-6059.201711010      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2017/V30/I11/1048
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn