[1] GIRSHICK R. Fast R-CNN // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2015: 1440-1448.
[2] HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 770-778.
[3] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-Speed Tracking with Kernelized Correlation Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
[4] WANG J D, ZHANG T, SONG J K, et al. A Survey on Learning to Hash. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. DOI: 10.1109/TPAMI.2017.2699960.
[5] LU J W, LIONG V E, ZHOU X Z, et al. Learning Compact Binary Face Descriptor for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(10): 2041-2056.
[6] LIN K, LU J W, CHEN C S, et al. Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition.Wa-
shington, USA: IEEE, 2016: 1183-1192.
[7] DUAN Y Q, LU J W, WANG Z W, et al. Learning Deep Binary Descriptor with Multi-quantization // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 4857-4866.
[8] PARKHI O M, SIMONYAN K, VEDALDI A, et al. A Compact and Discriminative Face Track Descriptor // Proc of the IEEE Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 1693-1700.
[9] GONG Y C, LAZEBNIK S, GORDO A, et al. Iterative Quantization: A Procrustean Approach to Learning Binary Codes for Large-Scale Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929.
[10] JOLLIFFE I T. Principal Component Analysis and Factor Analysis // JOLLIFFE I T, eds. Principal Component Analysis. New York, USA: Springer, 1986: 115-128.
[11] HARTIGAN J A, MANCHEK A W. Algorithm AS 136: A K-means Clustering Algorithm. Journal of the Royal Statistical Society(Applied Statistics), 1979, 28(1): 100-108.
[12] CAJO J F, TER B. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis. Ecology, 1986, 67(5): 1167-1179.
[13] HE K M, WEN F, SUN J. K-means Hashing: An Affinity-Preserving Quantization Method for Learning Binary Compact Codes // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2013: 2938-2945.
[14] WEISS Y, TORRALBA A, FERGUS R. Spectral Hashing // KOLLER D, SCHUURMANS D, BENGIO Y, et al., eds. Advances in Neural Information Processing Systems 21. Cambridge, USA: The MIT Press, 2009: 1753-1760.
[15] MATSUSHITA Y, WADA T. Principal Component Hashing: An Accelerated Approximate Nearest Neighbor Search // Proc of the Pacific-Rim Symposium on Image and Video Technology. Berlin, Germany: Springer, 2009: 374-385.
[16] HE J F, CHANG S F, RADHAKRISHNAN R, et al. Compact Hashing with Joint Optimization of Search Accuracy and Time // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2011: 753-760.
[17] ZHU X F, HUANG Z, CHENG H, et al. Sparse Hashing for Fast Multimedia Search. ACM Transactions on Information Systems(TOIS), 2013. DOI: 10.1145/2457465.2457469.
[18] LI P, WANG M, CHENG J, et al. Spectral Hashing with Semantically Consistent Graph for Image Indexing. IEEE Transactions on Multimedia, 2013, 15(1): 141-152.
[19] HE J F, LIU W, CHANG S F. Scalable Similarity Search with Optimized Kernel Hashing // Proc of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2010: 1129-1138.
[20] YANG Y, SHEN F M, SHEN H T, et al. Robust Discrete Spectral Hashing for Large-Scale Image Semantic Indexing. IEEE Transactions on Big Data, 2015, 1(4): 162-171.
[21] WANG J, KUMAR S, CHANG S F. Sequential Projection Lear-ning for Hashing with Compact Codes // Proc of the 27th International Conference on Machine Learning. West Norriton, USA: Omnipress, 2010: 1127-1134.
[22] HAO Y B, MU T T, HONG R C, et al. Stochastic Multiview Ha-shing for Large-Scale Near-Duplicate Video Retrieval. IEEE Tran-sactions on Multimedia, 2017, 19(1): 1-14.
[23] DONG Z, JIA S, WU T F, et al. Face Video Retrieval via Deep Learning of Binary Hash Representations[C/OL]. [2017-11-25]. http://www.ams.stonybrook.edu/~jias/AAAI16.pdf.
[24] LIU W, WANG J, KUMAR S, et al. Hashing with Graphs[C/OL]. [2017-11-25]. http://www.icml-2011.org/papers/6_icmlpaper.pdf.
[25] LIU W, MU C, KUMAR S, et al. Discrete Graph Hashing[C/OL]. [2017-11-25]. http://www.ee.columbia.edu/~wliu/NIPS14_dgh.pdf.
[26] LIONG V E, LU J W, WANG G, et al. Deep Hashing for Compact Binary Codes Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 2475-2483.
[27] KULIS B, DARRELL T. Learning to Hash with Binary Reconstructive Embeddings // BENGIO Y, SCHUURMANS D, LAFFERLY J D, eds. Advance in Neural Information Processing Systems 22. Cambridge, USA: The MIT Press, 2009: 1042-1050.
[28] SHEN F M, SHEN C H, LIU W, et al. Supervised Discrete Ha-shing // Proc of the International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 37-45.
[29] CHEN Z X, LU J W, FENG J J, et al. Nonlinear Discrete Ha-shing. IEEE Transactions on Multimedia, 2017, 19(1): 123-135.
[30] CHEN Z X, LU J W, FENG J J, et al. Nonlinear Sparse Hashing. IEEE Transactions on Multimedia, 2017, 19(9): 1996-2009.
[31] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet Cla-ssification with Deep Convolutional Neural Networks // PEREIRA F, BURGES C J C, BOTTOU L, et al., eds. Advance in Neural Information Processing Systems 25. Cambridge, USA: The MIT Press, 2012: 1097-1105.
[32] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J/OL]. [2017-11-25]. https://arxiv.org/pdf/1409.1556.pdf.
[33] XIA R K, PAN Y, LAI H J, et al. Supervised Hashing for Image Retrieval via Image Representation Learning // Proc of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 2156-2162.
[34] ZHU H, LONG M S, WANG J M, et al. Deep Hashing Network for Efficient Similarity Retrieval // Proc of the 30th AAAI Confe-rence on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 2415-2421.
[35] CAO Y, LONG M S, WANG J M. Correlation Hashing Network for Efficient Cross-Modal Retrieval[C/OL]. [2017-11-25]. https://arxiv.org/pdf/1602.06697.pdf.
[36] CAO Y, LONG M S, WANG J M, et al. Deep Visual-Semantic Hashing for Cross-Modal Retrieval // Proc of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 1445-1454.
[37] CAO Y, LONG M S, WANG J M, et al. Collective Deep Quantization for Efficient Cross-Modal Retrieval // Proc of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2017: 3974-3980.
[38] LIU H M, WANG R P, SHAN S G, et al. Deep Supervised Ha-shing for Fast Image Retrieval // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2064-2072.
[39] SONG J K, YANG Y, HUANG Z, et al. Effective Multiple Feature Hashing for Large-Scale Near-Duplicate Video Retrieval. IEEE Transactions on Multimedia, 2013, 15(8): 1997-2008.
[40] LAI H J, PAN Y, LIU Y, et al. Simultaneous Feature Learning and Hash Coding with Deep Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 3270-3278.
[41] DOUZE M, JEGOU H, SCHMID C. An Image-Based Approach to Video Copy Detection with Spatio-Temporal Post-Filtering. IEEE Transactions on Multimedia, 2010, 12(4): 257-266.
[42] COSKUN B, SANKUR B, MEMON N. Spatio-Temporal Transform Based Video Hashing. IEEE Transactions on Multimedia, 2006, 8(6): 1190-1208.
[43] YE G N, LIU D, WANG J, et al. Large-Scale Video Hashing via Structure Learning // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2013: 2272-2279.
[44] CAO L L, LI Z G, MU Y D, et al. Submodular Video Hashing: A Unified Framework towards Video Pooling and Indexing // Proc of the 20th ACM International Conference on Multimedia. New York, USA: ACM, 2012: 299-308.
[45] YU L T, HUANG Z, CAO J W, et al. Scalable Video Event Retrieval by Visual State Binary Embedding. IEEE Transactions on Multimedia, 2016, 18(8): 1590-1603.
[46] LI Y, WANG R P, SHAN S G, et al. Hierarchical Hybrid Statistic Based Video Binary Code and Its Application to Face Retrieval in TV-Series // Proc of the IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Washington, USA: IEEE, 2015. DOI: 10.1109/FG.2015.7163089.
[47] LIONG V E, LU J W, TAN Y P, et al. Deep Video Hashing. IEEE Transactions on Multimedia, 2017, 19(6): 1209-1219.
[48] CHEN Z X, LU J W, FENG J J, et al. Nonlinear Structural Ha-shing for Scalable Video Search. IEEE Transactions on Circuits and Systems for Video Technology, 2017. DOI: 10.1109/TCSVT.2017.669095.
[49] WANG J, KUMAR S, CHANG S F. Semi-supervised Hashing for Scalable Image Retrieval // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2010: 3424-3431.
[50] WANG J, KUMAR S, CHANG S F. Semi-supervised Hashing for Large-Scale Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2393-2406.
[51] LU J W, LIONG V E, ZHOU J. Simultaneous Local Binary Feature Learning and Encoding for Homogeneous and Heterogeneous Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. DOI: 10.1109/TPAMI.2017.2737538.
[52] DUAN Y Q, LU J W, FENG J J, et al. Learning Rotation-Invariant Local Binary Descriptor. IEEE Transactions on Image Proce-ssing, 2017, 26(8): 3636-3651.
[53] DUAN Y Q, LU J W, FENG J J, et al. Context-Aware Local Binary Feature Learning for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. DOI: 10.1109/TPAMI.2017.2710183.
[54] LU J W, LIONG V E, ZHOU J. Cost-Sensitive Local Binary Feature Learning for Facial Age Estimation. IEEE Transactions on Image Processing, 2015, 24(12): 5356-5368.
[55] REN S Q, CAO X D, WEI Y C, et al. Face Alignment at 3000 FPS via Regressing Local Binary Features // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 1685-1692.
[56] GONG Y C, KUMAR S, ROWLEY H A, et al. Learning Binary Codes for High-Dimensional Data Using Bilinear Projections // Proc of the IEEE Conference on Computer Vision and Pattern Re-cognition. Washington, USA: IEEE, 2013: 484-491.
[57] BABENKO A, LEMPITSKY V. Additive Quantization for Extreme Vector Compression // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 931-938.
[58] XIA Y, HE K M, KOHLI P, et al. Sparse Projections for High-Dimensional Binary Codes // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 3332-3339.
[59] GONG Y C, LAZEBNIK S. Iterative Quantization: A Procrustean Approach to Learning Binary Codes // Proc of the IEEE Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2011: 817-824.
[60] YU F X, KUMAR S, GONG Y C, et al. Circulant Binary Embe-dding[C/OL]. [2017-11-25]. https://arxiv.org/pdf/1405.3162.pdf.
[61] SHEN F M, ZHOU X, YANG Y, et al. A Fast Optimization Me-thod for General Binary Code Learning. IEEE Transactions on Image Processing, 2016, 25(12): 5610-5621.
[62] LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: Binary Robust Invariant Scalable Keypoints // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2011: 2548-2555.
[63] CALONDER M, LEPETIT V, STRECHA C, et al. Brief: Binary Robust Independent Elementary Features // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2010: 778-792.
[64] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An Efficient Alternative to SIFT or SURF // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2011: 2564-2571.
[65] HUANG Z D, WEI Z Z, ZHANG G J. RWBD: Learning Robust Weighted Binary Descriptor for Image Matching. IEEE Transactions on Circuits and Systems for Video Technology, 2017. DOI: 10.1109/TCSVT.2017.2656471.
[66] BALNTAS V, TANG L L, MIKOLAJCZYK K. Bold-Binary Online Learned Descriptor for Efficient Image Matching // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 2367-2375.
[67] TRZCINSKI T, LEPETIT V. Efficient Discriminative Projections for Compact Binary Descriptors // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2012, I: 228-242.
[68] FAN B, KONG Q Q, TRZCINSKI T, et al. Receptive Fields Selection for Binary Feature Description. IEEE Transactions on Image Processing, 2014, 23(6): 2583-2595.
[69] BLAKE A, ISARD M. The CONDENSATION Algorithm-Conditional Density Propagation and Applications to Visual Tracking // Proc of the International Conference on Neural Information Proce-ssing Systems. Washington, USA: IEEE, 1996: 361-365.
[70] ROSS D A, LIM J, LIN R S, et al. Incremental Learning for Robust Visual Tracking. International Journal of Computer Vision, 2008, 77(1/2/3): 125-141.
[71] BABENKO B, YANG M H, BELONGIE S. Visual Tracking with Online Multiple Instance Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2009: 983-990.
[72] LI X, SHEN C H, DICK A, et al. Learning Compact Binary Codes for Visual Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2013: 2419-2426.
[73] JAIN H, ZEPEDA J, PREZ P, et al. SUBIC: A Supervised, Structured Binary Code for Image Search // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 833-842. |