[1] SCHAPIRE R E, SINGER Y. BoosTexter: A Boosting-Based System for Text Categorization. Machine Learning, 2000, 39(2/3): 135-168.
[2] ZHANG M L, ZHOU Z H. Multi Label Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1338-1351.
[3] BOUTELL M R, LUO J B, SHEN X P, et al. Learning Multi-label Scene Classification. Pattern Recognition, 2004, 37(9): 1757-1771.
[4] 何志芬,杨 明,刘会东.多标记分类和标记相关性的联合学习.软件学报, 2014, 25(9): 1967-1981.
(HE Z F, YANG M, LIU H D. Joint Learning of Multi-label Cla-ssification and Label Correlation. Journal of Software, 2014, 25(9): 1967-1981.)
[5] ZHANG L J, HU Q H, DUAN J, et al. Multi-label Feature Selection with Fuzzy Rough Sets // Proc of the International Conference on Rough Sets and Knowledge Technology. Berlin, Germany: Springer, 2014: 121-128.
[6] HOTELLING H. Relations between Two Sets of Variates. Biometrika, 1936, 28(3/4): 321-377.
[7] ZHANG Y, ZHOU Z H. Multi-label Dimensionality Reduction via Dependence Maximization // Proc of the 23rd International Confe-rence on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2008, III: 1503-1505.
[8] YU K, YU S P, TRESP V. Multi-label Informed Latent Semantic Indexing // Proc of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2005: 258-265.
[9] LIN Y J, HU Q H, LIU J H, et al. Multi-label Feature Selection Based on Max-Dependency and Min-Redundancy. Neurocomputing, 2015, 168: 92-103.
[10] LIN Y J, HU Q H, LIU J H, et al. Multi-label Feature Selection Based on Neighborhood Mutual Information. Applied Soft Computing, 2016, 38: 244-256.
[11] 刘景华,林梦雷,王晨曦,等.基于局部子空间的多标记特征选择算法.模式识别与人工智能, 2016, 29(3): 240-251.
(LIU J H, LIN M L, WANG C X, et al. Multi-label Feature Selection Algorithm Based on Local Subspace. Pattern Recognition and Artificial Intelligence, 2016, 29(3): 240-251.)
[12] LI F, MIAO D Q, PEDRYC Z. Granular Multi-label Feature Selection Based on Mutual Information. Pattern Recognition, 2017, 67: 410-423.
[13] 段 洁,胡清华,张灵均,等.基于邻域粗糙集的多标记分类特征选择算法.计算机研究与发展, 2015, 52(1): 56-65.
(DUAN J, HU Q H, ZHANG L J, et al. Feature Selection for Multi-label Classification Based on Neighborhood Rough Sets. Journal of Computer Research and Development, 2015, 52(1): 56-65.)
[14] SPOLAÔR N, CHERMAN E A, MONARD M C, et al. Using ReliefF for Multi-label Feature Selection // Proc of the Brazilian Conference on Intelligent Systems. Washington, USA: IEEE, 2011: 960-975.
[15] SPOLAÔR N, CHERMAN E A, MONARD M C, et al. A Comparison of Multi-label Feature Selection Methods Using the Problem Transformation Approach. Electronic Notes in Theoretical Compu-ter Science, 2013, 292: 135-151.
[16] SPOLAÔR N, CHERMAN E A, MONARD M C, et al. ReliefF for Multi-label Feature Selection // Proc of the Brazilian Conference on Intelligent Systems. Washington, USA: IEEE, 2013: 6-11.
[17] REYES O, MORELL C, VENTURA S. Scalable Extensions of the ReliefF Algorithm for Weighting and Selecting Features on the Multi-label Learning Context. Neurocomputing, 2015, 161: 168-182.
[18] 李 娜,潘志松,周星宇.基于多标记重要性排序的分类器链算法.模式识别与人工智能, 2016, 29(6): 567-575.
(LI N, PAN Z S, ZHOU X Y. Classifier Chain Algorithm Based on Multi-label Importance Rank. Pattern Recognition and Artificial Intelligence, 2016, 29(6): 567-575.)
[19] GILAD-BACHRACH R, NAVOT A, TISHBY N. Margin Based Feature Selection-Theory and Algorithms // Proc of the 21st International Conference on Machine learning. New York, USA: ACM, 2004: 43.
[20] ZHANG M L, PEÑA J M, ROBLES V. Feature Selection for Multi-label Naive Bayes Classification. Information Sciences, 2009, 179(19): 3218-3229.
[21] ZHANG M L, ZHOU Z H. ML-KNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition, 2007, 40(7): 2038-2048. |