[1] HAN J W, KAMBER M, PEI J. Data Mining: Concepts and Techniques. 3rd Edition. San Francisco, USA: Morgan Kaufmann Publishers, 2011.
[2] LINGRAS P, WEST C. Interval Set Clustering of Web Users with Rough K-means. Journal of Intelligent Information Systems, 2004, 23(1): 5-16.
[3] PETERS G. Some Refinements of Rough K-means Clustering. Pa-ttern Recognition, 2006, 39(8): 1481-1491.
[4] 张腾飞,陈 龙,李 云.基于簇内不平衡度量的粗糙K-means聚类算法.控制与决策, 2013, 28(10): 1479-1484.
(ZHANG T F, CHEN L, LI Y. Rough K-means Clustering Based on Unbalanced Degree of Cluster. Control and Decision, 2013, 28(10): 1479-1484.)
[5] ZHANG T F, CHEN L, MA F M. A Modified Rough C-means Clustering Algorithm Based on Hybrid Imbalanced Measure of Distance and Density. International Journal of Approximate Reasoning, 2014, 55(8): 1805-1818.
[6] 李 莲,罗 可,周博翔.基于粒计算的粗糙集聚类算法.计算机应用研究, 2013, 30(10): 2916-2919.
(LI L, LUO K, ZHOU B X. Rough Clustering Algorithm Based on Granular Computing. Application Research of Computers, 2013, 30(10): 2916-2919.)
[7] MITRA S, BANKA H, PEDRYCZ W. Rough Fuzzy Collaborative Clustering. IEEE Transactions on Systems, Man, and Cybernetics(Cybernetics), 2006, 36(4): 795-805.
[8] MAJI P, PAL S K. RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets. Fundamenta Informaticae, 2007, 80(4): 475-496.
[9] MENDEL J M, John R I B. Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems, 2002, 10(2): 117-127.
[10] RHEE F C H, HWANG C. A Type-2 Fuzzy C-means Clustering Algorithm // Proc of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Washington, USA: IEEE, 2001: 1926-1929.
[11] ZARANDI M H F, ZARINBAL M, TRKSEN I B.Type-II Fuzzy Possibilistic C-means Clustering // Proc of the Joint International Fuzzy Systems Association World Congress and European Society of Fuzzy Logic and Technology Conference. Berlin, Germany: Springer, 2009: 30-35.
[12] RUBIO E, CASTILLO O. Interval Type-2 Fuzzy Clustering Algorithm Using the Combination of the Fuzzy and Possibilistic C-means Algorithms // Proc of the IEEE Conference on Norbert Wiener in the 21st Century. Washington, USA: IEEE, 2014. DOI: 10.1109/NORBERT.2014.6893879.
[13] ARABEGUM S, MEMA DEVI O. A Rough Type-2 Fuzzy Clus-tering Algorithm for MR Image Segmentation. International Journal of Computer Applications, 2012, 54(4): 4-11.
[14] SARKAR J P, SAHA I, MAULIK U. Rough Possibilistic Type-2 Fuzzy C-means Clustering for MR Brain Image Segmentation. Applied Soft Computing, 2016, 46: 527-536.
[15] SARKAR J P, SAHA I, MAULIK U. A New SVM Integrated Rough Type-II Fuzzy Clustering Technique // Proc of the 9th International Conference on Industrial and Information Systems. Washington, USA: IEEE, 2015. DOI: 10.1109/ICIINFS.2014.7036555.
[16] WU K L, YANG M S. Alternative C-means Clustering Algorithms. Pattern Recognition, 2002, 35(10): 2267-2278.
[17] LIU Y, HOU T, LIU F. Improving Fuzzy C-means Method for Unbalanced Dataset. Electronics Letters, 2015, 51(23): 1880-1882.
[18] TAHIR M A, KITTLER J, YAN F. Inverse Random under Sampling for Class Imbalance Problem and Its Application to Multi-label Classification. Pattern Recognition, 2012, 45(10): 3738-3750.
[19] LEE C Y, LEE Z J. A Novel Algorithm Applied to Classify Unba-lanced Data. Applied Soft Computing, 2012, 12(8): 2481-2485.
[20] HWANG C, RHEE F C H. Uncertain Fuzzy Clustering: Interval Type-2 Fuzzy Approach to C-means. IEEE Transactions on Fuzzy Systems, 2007, 15(1): 107-120.
[21] LIU F L, MENDEL J M. Encoding Words into Interval Type-2 Fuzzy Sets Using an Interval Approach. IEEE Transactions on Fuzzy Systems, 2008, 16(6): 1503-1521.
[22] PETERS G. Is There Any Need for Rough Clustering? Pattern Re-cognition Letters, 2015, 53: 31-37. |