模式识别与人工智能
Friday, Apr. 11, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2018, Vol. 31 Issue (5): 470-476    DOI: 10.16451/j.cnki.issn1003-6059.201805009
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Abnormal Activity Detection Based on Dense Trajectory Alignment and Motion Influence Descriptor in Crowded Scenes
YANG Xingming, HU Jun
School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601

Download: PDF (1684 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the defects of existing anomaly activity detection algorithms in terms of target tracking and description in crowded scenes, an algorithm based on dense trajectory alignment and motion influence descriptor is proposed to capture the key information of motion of video objects. Firstly, dense trajectory guarantees a valid proposal of video motion object. Then, the dense trajectory-aligned motion influence descriptor is extracted along the trajectory direction. Finally, an overall framework is developed to detect both global and local abnormal activities accurately. Experiments on UCSD public dataset prove that the proposed method outperforms other methods.
Key wordsVideo Surveillance      Video Surveillance      Abnormal Activity Detection      Abnormal Activity Detection      Dense Trajectory Alignment      Dense Trajectory Alignment      Motion Influence Descriptor      Motion Influence Descriptor     
Received: 31 January 2018     
ZTFLH: TP 391  
Corresponding Authors: YANG Xingming, Ph.D. candidate, associate professor. His research interests include computer control, internet of things, image processing and machine learning.   
About author:: HU Jun, master student. His research interests include image processing and machine learning.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG Xingming
YANG Xingming
HU Jun
HU Jun
Cite this article:   
YANG Xingming,YANG Xingming,HU Jun等. Abnormal Activity Detection Based on Dense Trajectory Alignment and Motion Influence Descriptor in Crowded Scenes[J]. , 2018, 31(5): 470-476.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/10.16451/j.cnki.issn1003-6059.201805009      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2018/V31/I5/470
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn