[1] 张海仓,高玉娟,邓明华,等.蛋白质中残基远程相互作用预测算法研究综述.计算机研究与发展, 2017, 54(1): 1-19.
(ZHANG H C, GAO Y J, DENG M H, et al. A Survey on Algorithms for Protein Contact Prediction. Journal of Computer Research and Development, 2017, 54 (1): 1-19.)
[2] 张燕平,查永亮,赵 姝,等.基于自相关系数和PseAAC的蛋白质结构类预测.计算机科学与探索, 2014, 8(1): 103-110.
(ZHANG Y P, ZHA Y L, ZHAO S, et al. Protein Structure Class Prediction Based on Autocorrelation Coefficient and PseAAC. Journal of Frontiers of Computer Science and Technology, 2014, 8(1): 103-110.)
[3] 李玉岗,张 法,刘志勇.结合位点进化距离与支持向量机的蛋白质分类方法.计算机学报, 2008, 31(1): 43-50.
(LI Y G, ZHANG F, LIU Z Y. Combining Position-Specific-Value Method and SVM for Remote Protein Classification. Chinese Journal of Computers, 2008, 31(1): 43-50.)
[4] 韩 跃,冀俊忠,杨翠翠.基于多标签传播机制的蛋白质相互作用网络功能模块检测.模式识别与人工智能, 2016, 29(6): 548-557.
(HAN Y, JI J Z, YANG C C. Functional Module Detection Based on Multi-label Propagation Mechanism in Protein-Protein Interaction Networks. Pattern Recognition and Artificial Intelligence, 2016, 29(6): 548-557.)
[5] CHENG J L, TEGGE A N, BALDI P. Machine Learning Methods for Protein Structure Prediction. IEEE Reviews in Biomedical Engineering, 2008, 1: 41-49.
[6] KANNAN D, DIABAT A, ALREFAEI M, et al. A Carbon Footprint Based Reverse Logistics Network Design Model. Resources, Conservation and Recycling, 2012, 67: 75-79.
[7] HUA S J, SUN Z R. A Novel Method of Protein Secondary Structure Prediction with High Segment Overlap Measure Support Vector Machine Approach. Journal of Molecular Biology, 2001, 308(2): 397-407.
[8] LI Z, YU Y Z. Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks // Proc of the 25th International Joint Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 2560-2567.
[9] WANG S, PENG J, MA J Z, et al. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields. Scientific Reports, 2016. DOI: 10.1038/srep18962.
[10] ROST B, SANDER C. Prediction of Protein Secondary Structure at Better Than 70% Accuracy. Journal of Molecular Biology, 1993, 232(2): 584-599.
[11] ZHOU J, TROYANSKAYA O G. Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction // Proc of the 31st International Conference on Machine Learning. New York, USA: ACM, 2014: 745-753.
[12] JONES D T. Protein Secondary Structure Prediction Based on Position-specific Scoring Matrices. Journal of Molecular Biology, 1999, 292(2): 195-202.
[13] QIAN N, SEJNOWSKI T J. Predicting the Secondary Structure of Globular Proteins Using Neural Network Models. Journal of Mole-cular Biology, 1988, 202(4): 865-884.
[14] POLLASTRI G, PRZYBYLSKI D, ROST B, et al. Improving the Prediction of Protein Secondary Structure in Three and Eight Cla-sses Using Recurrent Neural Networks and Profiles. Proteins, 2002, 47(2): 228-235.
[15] KABSCH W, SANDER C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers, 1983, 22(12): 2577-2637.
[16] WANG Z Y, ZHAO F, PENG J, et al. Protein 8-Class Secondary Structure Prediction Using Conditional Neural Fields // Proc of the IEEE International Conference on Bioinformatics and Biomedicine. Washington, USA: IEEE, 2010: 109-114.
[17] SO/NDERBY S K, WINTHER O. Protein Secondary Structure Prediction with Long Short Term Memory Networks[C/OL]. [2017-11-25]. https://arxiv.org/pdf/1412.7828v2.pdf.
[18] BUSIA A, COLLINS J, JAITLY N. Protein Secondary Structure Prediction Using Deep Multi-scale Convolutional Neural Networks and Next-Step Conditioning[C/OL]. [2017-11-25]. https://arxiv.org/pdf/1611.01503v1.pdf.
[19] 吕永标,赵建伟,曹飞龙.基于复合卷积神经网络的图像去噪算法.模式识别与人工智能, 2017, 30(2): 97-105.
(LÜ Y B, ZHAO J W, CAO F L. Image Denoising Algorithm Based on Composite Convolutional Neural Network. Pattern Recognition and Artificial Intelligence, 2017, 30(2): 97-105.)
[20] BENGIO Y. Deep Learning of Representations: Looking Forward[C/OL]. [2017-11-25]. https://arxiv.org/pdf/1305.0445.pdf.
[21] 阮晓钢,孙海军.编码方式对蛋白质二级结构预测精度的影响.北京工业大学学报, 2005, 31(3): 229-235.
(RUAN X G, SUN H J. Research on Encode Influencing Protein Secondary Structure Prediction. Journal of Beijing University of Technology, 2005, 31(3): 229-235.)
[22] ALTSCHUL S F, MADDEN T L, SCHÄFFER A A, et al. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 1997, 25(17): 3389-3402.
[23] BUSIA A, JAITLY N. Next-Step Conditioned Deep Convolutional Neural Networks Improve Protein Secondary Structure Prediction[C/OL]. [2017-11-25]. https://arxiv.org/pdf/1702.03865.pdf.
[24] ASGARI E, MOFRAD M R K. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics. PlOS One, 2015. DOI: 10.1371/journal.pone.0141287.
[25] KINGMA D P, BA J. ADAM: A Method for Stochastic Optimization[C/OL]. [2017-11-25]. https://arxiv.org/pdf/1412.6980.pdf. |