[1] ZHANG M L, ZHOU Z H. Multi-label Learning // SAMMUT C, WEBB G I, eds. Encyclopedia of Machine Learning and Data Mi-ning. Berlin, Germany: Springer, 2017: 875-881.
[2] BOUTELL M R, LUO J B, SHEN X P, et al. Learning Multi-label Scene Classification. Pattern Recognition, 2004, 37(9): 1757-1771.
[3] ZHANG M L, ZHOU Z H. Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1338-1351.
[4] ZHANG M L, ZHOU Z H. ML-KNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition, 2007, 40(7): 2038-2048.
[5] READ J, PFAHRINGER B, HOLMES G, et al. Classifier Chains for Multi-label Classification. Machine Learning, 2011, 85(3). DOI: https://doi.org/10.1007/s10994-011-5256-5.
[6] FÜRNKRANZ J, HÜLLERMEIER E, MENCIA E L, et al. Multilabel Classification via Calibrated Label Ran-king. Machine Learning, 2008, 73(2): 133-153.
[7] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random k-Labelsets for Multilabel Classification. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7): 1079-1089.
[8] ELISSEEFF A, WESTON J. A Kernel Method for Multi-labelled Classification // DIETTERICH T G, BECHER S, GHAHRAMANI Z, eds. Advances in Neural Information Processing Systems 14. Cambridge, USA: The MIT Press, 2002: 681-687.
[9] ZHANG Y, YEUNG D Y. Multilabel Relationship Learning. ACM Transactions on Knowledge Discovery from Data, 2013, 7(2). DOI: 10.1145/2499907.2499910.
[10] SHANNON C E. A Mathematical Theory of Communication. The Bell System Technical Journal, 1948, 27(3): 379-423.
[11] 张振海,李士宁,李志刚.一种基于相关信息熵的多标签分类算法.西北工业大学学报, 2012, 30(6): 968-973.
(ZHANG Z H, LI S N, LI Z G. A Multi-label Classification Algorithm Using Correlation Information Entropy. Journal of Northwes-tern Polytechnical University, 2012, 30(6): 968-973.)
[12] LEE J, KIM H, KIM N R, et al. An Approach for Multi-label Classification by Directed Acyclic Graph with Label Correlation Maximization. Information Sciences, 2016, 351: 101-114.
[13] HUANG S J, YU Y, ZHOU Z H. Multi-label Hypothesis Reuse // Proc of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2012: 525-533.
[14] 张敏灵.一种新型多标记懒惰学习算法.计算机研究与发展, 2012, 49(11): 2271-2282.
(ZHANG M L. An Improved Multi-label Lazy Learning Approach. Journal of Computer Research and Development, 2012, 49(11): 2271-2282.)
[15] YOUNES Z, ABDALLAH F, DENOEUX T. Multi-label Classification Algorithm Derived from K-Nearest Neighbor Rule with Label Dependencies[C/OL].[2018-03-15]. https:// ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7080359.
[16] GWEON H, SCHONLAU M, STEINER S. Nearest Labelset Using Double Distances for Multi-label Classification[C/OL]. [2018-03-15]. https://arxiv.org/pdf/1702.04684.pdf.
[17] HUANG G, HUANG G B, SONG S J, et al. Trends in Extreme Learning Machines: A Review. Neural Networks, 2015, 61: 32-48.
[18] HUANG G B. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cognitive Computation, 2014, 6(3): 376-390.
[19] DING S F, XU X Z, NIE R. Extreme Learning Machine and Its Applications. Neural Computing and Applications, 2014, 25(3/4): 549-556.
[20] LIU Y, WEN K W, GAO Q X, et al. SVM Based Multi-label Learning with Missing Labels for Image Annotation. Pattern Recognition, 2018, 78: 307-317.
[21] PIZZUTI C. A Multi-objective Genetic Algorithm for Community Detection in Networks // Proc of the 21st IEEE International Conference on TOOLS with Artificial Intelligence. Washington, USA: IEEE, 2009: 379-386.
[22] ZHANG M L, ZHOU Z H. A Review on Multi-label Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837.
[23] 邓万宇,郑庆华,陈 琳,等.神经网络极速学习方法研究.计算机学报, 2010, 33(2): 279-287.
(DENG W Y, ZHENG Q H, CHEN L, et al. Research on Extreme Learning of Neural Networks. Chinese Journal of Computers, 2010, 33(2): 279-287.)
[24] LUO F F, GUO W Z, YU Y L, et al. A Multi-label Classification Algorithm Based on Kernel Extreme Learning Machine. Neurocomputing, 2017, 260: 313-320.
[25] ZHANG M L, WU L. Lift: Multi-label Learning with Label-Speci-fic Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(1): 107-120.
[26] DEMSˇAR J. Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research, 2006, 7: 1-30.
[27] LIN Y J, LI Y W, WANG C X, et al. Attribute Reduction for Multi-label Learning with Fuzzy Rough Set. Knowledge-Based Systems, 2018, 152: 51-61. |