[1] MEI J P, WANG Y T, CHEN L H, et al. Large Scale Document Categorization with Fuzzy Clustering. IEEE Transactions on Fuzzy Systems, 2017, 25(5): 1239-1251.
[2] 邱云飞,费博雯,刘大千.基于概率模型的重叠子空间聚类算法.模式识别与人工智能, 2017, 30(7): 609-621.
(QIU Y F, FEI B W, LIU D Q. Overlapping Subspace Clustering Based on Probabilistic Model. Pattern Recognition and Artificial Intelligence, 2017, 30(7): 609-621.)
[3] 叶 茂,刘文芬.基于快速地标采样的大规模谱聚类算法.电子与信息学报, 2017, 39(2): 278-284.
(YE M, LIU W F. Large Scale Spectral Clustering Based on Fast Landmark Sampling. Journal of Electronics and Information Techno-logy, 2017, 39(2): 278-284.)
[4] 周 林,平西建,徐 森,等.基于谱聚类的聚类集成算法.自动化学报, 2012, 38(8): 1335-1342.
(ZHOU L, PING X J, XU S, et al. Cluster Ensemble Based on Spectral Clustering. Acta Automatica Sinica, 2012, 38(8): 1335-1342.)
[5] 丁世飞,贾洪杰,史忠植.基于自适应Nyström采样的大数据谱聚类算法.软件学报, 2014, 25(9): 2037-2049.
(DING S F, JIA H J, SHI Z Z. Spectral Clustering Algorithm Based on Adaptive Nyström Sampling for Big Data Analysis. Journal of Software, 2014, 25(9): 2037-2049.)
[6] WILLIAMS C K I, SEEGER M. Using the Nyström Method to Speed up Kernel Machines // Proc of the 13th International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2000: 661-667.
[7] FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral Grouping Using the Nyström Method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225.
[8] WILLIAMS C K I, SEEGER M. The Effect of the Input Density Distribution on Kernel-Based Classifiers // Proc of the 17th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers, 2000: 1159-1166.
[9] DRINEAS P, MAHONEY M W. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning. Journal of Machine Learning Research, 2005, 6: 2153-2175.
[10] OUIMET M, BENGIO Y. Greedy Spectral Embedding[C/OL]. [2018-12-12]. http://www.gatsby.ucl.ac.uk/aistats/fullpapers/209.pdf.
[11] ZHANG K, TSANG I W, KWOK J T. Improved Nyström Low-Rank Approximation and Error Analysis // Proc of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008: 1232-1239.
[12] ZHANG K, KWOK J T. Clustered Nyström Method for Large Scale Manifold Learning and Dimension Reduction. IEEE Transactions on Neural Networks, 2010, 21(10): 1576-1587.
[13] KUMAR S, MOHRI M, TALWALKAR A. Sampling Methods for the Nyström Method. Journal of Machine Learning Research, 2012, 13: 981-1006.
[14] SHI J B, MALIK J. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
[15] BOUTSIDIS C, MAHONEY M W, DRINEAS P. An Improved Approximation Algorithm for the Column Subset Selection Problem // Proc of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms. New York, USA: ACM, 2009: 968-977.
[16] 唐 伟,周志华.基于Bagging的选择性聚类集成.软件学报, 2005, 16(4): 496-502.
(TANG W, ZHOU Z H. Bagging-Based Selective Cluster Ensemble. Journal of Software, 2005, 16(4): 496-502.)
[17] FERN X Z, LIN W. Cluster Ensemble Selection. Statistical Analysis and Data Mining, 2008, 1(3): 128-141.
[18] 刘展杰,陈晓云.局部子空间聚类.自动化学报, 2016, 42(8): 1238-1247.
(LIU Z J, CHEN X Y. Local Subspace Clustering. Acta Automatica Sinica, 2016, 42(8): 1238-1247.)
[19] 邱云飞,杨 倩,唐晓亮.基于粒子群优化的软子空间聚类算法.模式识别与人工智能, 2015, 28(10): 903-912.
(QIU Y F, YANG Q, TANG X L. Soft Subspace Clustering Based on Particle Swarm Optimization. Pattern Recognition and Artificial Intelligence, 2015, 28(10): 903-912.)
[20] ZHANG X C, YOU Q Z. Clusterability Analysis and Incremental Sampling for Nyström Extension Based Spectral Clustering // Proc of the 11th IEEE International Conference on Data Mining. Wa-shington, USA: IEEE, 2011: 942-951. |