[1] CUI A G, PENG J G, LI H Y. Exact Recovery Low-Rank Matrix via Transformed Affine Matrix Rank Minimization. Neurocomputing, 2018, 319: 1-12.
[2] HUANG S M, WOLKOWICZ H. Low-Rank Matrix Completion Using Nuclear Norm Minimization and Facial Reduction. Journal of Global Optimization, 2018, 72(1): 5-26.
[3] DAVENPORT M A, ROMBERG J. An Overview of Low-Rank Matrix Recovery from Incomplete Observations. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(4): 608-622.
[4] YU S, YIQUAN W Q. Subspace Clustering Based on Latent Low Rank Representation with Frobenius Norm Minimization. Neurocomputing, 2018, 275: 2479-2489.
[5] LIU G C, LIN Z C, YAN S C, et al. Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[6] CANDÈS E J, LI X D, MA Y, et al. Robust Principal Component Analysis. Journal of the ACM, 2011, 58(3). DOI: 10.1145/1970392.1970395.
[7] LIN X F, WEI G . Accelerated Reweighted Nuclear Norm Minimization Algorithm for Low Rank Matrix Recovery. Signal Processing, 2015, 114: 24-33.
[8] LU C Y, LIN Z C, YAN S C. Smoothed Low Rank and Sparse Matrix Recovery by Iteratively Reweighted Least Squares Minimization. IEEE Transactions on Image Processing, 2015, 24(2): 646-654.
[9] HAN D R, YUAN X M. A Note on the Alternating Direction Method of Multipliers. Journal of Optimization Theory and Applications, 2012, 155(1): 227-238.
[10] TOH K C, YUN S W. An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Linear Least Squares Problems. Pacific Journal of Optimization, 2010, 6(3): 615-640.
[11] LU C Y, TANG J H, YAN S C, et al. Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted Nuclear Norm. IEEE Transactions on Image Processing, 2016, 25(2): 829-839.
[12] CANDÈS E J, TAO T. The Power of Convex Relaxation: Near-Optimal Matrix Completion. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080.
[13] LEE J, CHOE Y. Low Rank Matrix Recovery via Augmented Lagrange Multiplier with Nonconvex Minimization // Proc of the 12th IEEE Image, Video, and Multidimensional Signal Processing Workshop. Washington, USA: IEEE, 2016. DOI: 10.1109/IVMSPW.2016.7528217.
[14] ZHAO T, WANG Z R, LIU H. A Nonconvex Optimization Framework for Low Rank Matrix Estimation // JORDAN M I, LECUN Y, SOLLA S A, eds. Advances in Neural Information Processing Systems 28. Cambridge, USA: The MIT Press, 2015: 559-567.
[15] CHEN W G, LI Y L. Stable Recovery of Low-Rank Matrix via Nonconvex Schatten p-Minimization. Science China(mathematics), 2015, 58(12): 2643-2654.
[16] LU C Y, FENG J S, CHEN Y D, et al. Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 5249-5257.
[17] GOLDFARB D, QIN Z W. Robust Low-Rank Tensor Recovery: Models and Algorithms. SIAM Journal on Matrix Analysis and Applications, 2014, 35(1): 225-253.
[18] KILMER M E, MARTIN C D. Factorization Strategies for Third-Order Tensors. Linear Algebra and Its Applications, 2011, 435(3): 641-658.
[19] LU C Y, FENG J S, CHEN Y D, et al. Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm[J/OL]. [2018-12-12]. https://arxiv.org/pdf/1804.03728v1.pdf.
[20] LIU J, MUSIALSKI P, WONKA P, et al. Tensor Completion for Estimating Missing Values in Visual Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-220.
[21] LU C Y, FENG J S, LIN Z C, et al. Exact Low Tubal Rank Tensor Recovery from Gaussian Measurements // Proc of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM, 2018: 2504-2510.
[22] LU C Y, ZHU C B, XU C Y, et al. Generalized Singular Value Thresholding // Proc of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 1805-1811.
[23] BECK A, TEBOULLE M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. |