[1] ZADEH L A. Fuzzy Sets. Information and Control, 1965, 8(3): 338-353.
[2] PEDRYCZ W. Shadowed Sets: Representing and Processing Fuzzy Sets. IEEE Transactions on Systems, Man, and Cybernetics(Cybernetics), 1998, 28(1): 103-109.
[3] PEDRYCZ W. Shadowed Sets: Bridging Fuzzy and Rough Sets // INUIGUCHI M, WU W Z, CORNELISC, et al., eds. Rough Fuzzy Hybridization. Singapore, Singapore: Springer, 1999: 179-199.
[4] PEDRYCZ W. Granular Computing with Shadowed Sets // Proc of the International Workshop on Rough Sets, Fuzzy Sets, Data Mi-ning, and Granular-Soft Computing. Berlin, Germany: Springer, 2005: 23-32.
[5] PEDRYCZ W. Interpretation of Clusters in the Framework of Sha-dowed Sets. Pattern Recognition Letters, 2005, 26(15): 2439-2449.
[6] PEDRYCZ W. From Fuzzy Sets to Shadowed Sets: Interpretation and Computing. International Journal of Intelligent Systems, 2009, 24(1): 48-61.
[7] DENG X F. Three-Way Classification Models. Ph.D. Dissertation. Regina, Canada: University of Regina, 2015.
[8] DENG X F, YAO Y Y. Decision-Theoretic Three-Way Approximations of Fuzzy Sets. Information Sciences, 2014, 279: 702-715.
[9] TAHAYORI H, SADEGHIAN A, PEDRYCZ W. Induction of Sha-dowed Sets Based on the Gradual Grade of Fuzziness. IEEE Transactions on Fuzzy Systems, 2013, 21(5): 937-949.
[10] GRZEGORZEWSKI P. Fuzzy Number Approximation via Shadowed Sets. Information Sciences, 2013, 225: 35-46.
[11] MITRA S, PEDRYCZ W, BARMAN B. Shadowed c-means: Integrating Fuzzy and Rough Clustering. Pattern Recognition, 2010, 43(4): 1282-1291.
[12] 郭晋华,苗夺谦,周 杰.基于阴影集的粗糙聚类阈值选择.计算机科学, 2011, 38(10): 209-210, 227.
(GUO J H, MIAO D Q, ZHOU J. Shadowed Sets Based Threshold Selection in Rough Clustering. Computer Science, 2011, 38(10): 209-210, 227.)
[13] YU H. A Framework of Three-Way Cluster Analysis // Proc of the International Joint Conference on Rough Sets. Berlin, Germany: Springer, 2017: 300-312.
[14] YU H, ZHANG C, WANG G Y. A Tree-Based Incremental Overlapping Clustering Method Using the Three-Way Decision Theory. Knowledge-Based Systems, 2016, 91: 189-203.
[15] WANG P X, YAO Y Y. CE3: A Three-Way Clustering Method Based on Mathematical Morphology. Knowledge-Based Systems, 2018, 155: 54-65.
[16] RODRIGUEZ A, LAIO A. Machine Learning: Clustering by Fast Search and Find of Density Peaks. Science, 2014, 344(6191): 1492-1496.
[17] WANG S L, WANG O K, LI C Y, et al. Clustering by Fast Search and Find of Density Peaks with Data Field. Chinese Journal of Electronics, 2016, 25(3): 397-402.
[18] XU J, WANG G Y, DENG W H. DenPEHC: Density Peak Based Efficient Hierarchical Clustering. Information Sciences, 2016, 373(12): 200-218.
[19] 谢娟英,高红超,谢维信.K近邻优化的密度峰值快速搜索聚类算法.中国科学(信息科学), 2016, 46(2): 258-280.
(XIE J Y, GAO H C, XIE W X. Clustering by Fast Search and Find of Density Peaks Based the Optimization of K-nearest Neighbors. Scientia Sinica(Informations), 2016, 46(2): 258-280.)
[20] XIE J Y, GAO H C, XIE W X, et al. Robust Clustering by Detecting Density Peaks and Assigning Points Based on Fuzzy Weighted K-nearest Neighbors. Information Sciences, 2016, 354: 19-40.
[21] DU M J, DING S F, JIA H J. Study on Density Peaks Clustering Based on k-Nearest Neighbors and Principal Component Analysis. Knowledge-Based Systems, 2016, 99: 135-145.
[22] ZHANG W K, LI J. Extended Fast Search Clustering Algorithm: Widely Density Clusters, No Density Peaks. Computer Science, 2015, 5(7): 1-18.
[23] 张文开.基于密度的层次聚类算法研究.硕士学位论文.合肥:中国科学技术大学, 2015.
(ZHANG W K. Research on Density-Based Hierarchical Clustering Algorithm. Master Dissertation. Hefei, China: University of Science and Technology of China, 2015.)
[24] MEHMOOD R, BIE R F, DAWOOD H, et al. Fuzzy Clustering by Fast Search and Find of Density Peaks // Proc of the International Conference on Identification, Information, and Knowledge in the Internet of Things. Washington, USA: IEEE, 2016: 258-261.
[25] ZHANG Y F, CHEN S M, YU G. Efficient Distributed Density Peaks for Clustering Large Data Sets in MapReduce. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3218-3230.
[26] LIU X C. Entropy, Distance Measure and Similarity Measure of Fuzzy Sets and Their Relations. Fuzzy Sets and Systems, 1992, 52(3): 305-318.
[27] LIANG J Y, CHIN K, DANG C Y, et al. A New Method for Measuring Uncertainty and Fuzziness in Rough Set Theory. International Journal of General Systems, 2002, 31(4): 331-342.
[28] LUCA A D, TERMINI S. A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory. Information and Control, 1972, 20(4): 301-312.
[29] PAL N R, PAL S K. Entropy: A New Definition and Its Applications. IEEE Transactions on Systems, Man, and Cybernetics, 2002, 21(5): 1260-1270.
[30] YAO Y Y, WANG S, DENG X F. Constructing Shadowed Sets and Three-Way Approximations of Fuzzy Sets. Information Sciences, 2017, 412/413: 132-153.
[31] 张 翔,肖小玲,徐光祐.基于样本之间紧密度的模糊支持向量机方法.软件学报, 2006, 17(5): 951-958.
(ZHANG X, XIAO X L, XU G Y. Fuzzy Support Vector Machine Based on Affinity among Samples. Journal of Software, 2006, 17(5): 951-958.)
[32] 周德龙,赵志国,潘 泉,等.基于模糊集的图像增强算法研究.电子与信息学报, 2002, 24(7): 905-909.
(ZHOU D L, ZHAO Z G, PAN Q, et al. An Image Enhancement Algorithm Based on Fuzzy Sets. Journal of Electronics and Information Technology, 2002, 24(7): 905-909.)
[33] 申铉京,刘 翔,陈海鹏.基于多阈值Otsu准则的阈值分割快速计算.电子与信息学报, 2017, 39(1): 144-149.
(SHEN X J, LIU X, CHEN H P. Fast Computation of Threshold Based on Multi-threshold Otsu Criterion. Journal of Electronics and Information Technology, 2017, 39(1): 144-149.)
[34] FRÄNTI P, VIRMAJOKI O. Iterative Shrinking Method for Clus-tering Problems. Pattern Recognition, 2006, 39(5): 761-775.
[35] GIONIS A, MANAILA H, TSAPARAS P. Clustering Aggregation. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1). DOI: 10.1145/1217299.1217303.
[36] VEENMAN C J, REINDERS M J T, BACKER E. A Maximum Variance Cluster Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1273-1280.
[37] BEZDEK J C, PAL N R. Some New Indexes of Cluster Validity. IEEE Transactions on Systems, Man, and Cybernetics(Cyberne-tics), 1998, 28(3): 301-315.
[38] 刘解放,王士同,王 骏,等.一种具有最优保证特性的贝叶斯可能性聚类方法.电子与信息学报, 2017, 39(7): 1554-1562.
(LIU J F, WANG S T, WANG J, et al. Bayesian Possibilistic Clustering Method with Optimality Guarantees. Journal of Electro-nics and Information Technology, 2017, 39(7): 1554-1562.) |