[1] 陆 伟,武 川.实体链接研究综述.情报学报, 2015, 34(1): 105-112.
(LU W, WU C. Literature Review on Entity Linking. Journal of the China Society for Scientific and Technical Information, 2015, 34(1): 105-112.)
[2] SHEN W, WANG J Y, HAN J W. Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(2): 443-460.
[3] STERN R, SAGOT B, B CHET F. A Joint Named Entity Recognition and Entity Linking System // Proc of the Workshop on Innovative Hybrid Approaches to the Processing of Textual Data. Stroudsburg, USA: ACL, 2012: 52-60.
[4] SIL A, YATES A. Re-ranking for Joint Named-Entity Recognition and Linking // Proc of the 22nd ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2013: 2369-2374.
[5] BORDES A, USUNIER N, CHOPRA S, et al. Large-Scale Simple Question Answering with Memory Networks[C/OL]. [2019-01-01]. https://arxiv.org/pdf/1506.02075.pdf.
[6] GOLUB D, HE X D. Character-Level Question Answering with Attention[C/OL]. [2019-01-01]. https://arxiv.org/pdf/1604.00727.pdf.
[7] YIN W P, YU M, XIANG B, et al. Simple Question Answering by Attentive Convolutional Neural Network[C/OL]. [2019-01-01]. https://arxiv.org/pdf/1606.03391.pdf.
[8] LUKOVNIKOV D, FISCHER A, LEHMANN J, et al. Neural Network-Based Question Answering over Knowledge Graphs on Word and Character Level // Proc of the 26th International Conference on World Wide Web. Berlin, Germany: Springer, 2017: 1211-1220.
[9] YU M, YIN W P, HASAN K, et al. Improved Neural Relation Detection for Knowledge Base Question Answering // Proc of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2017, I: 571-581.
[10] PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. Ca-tBoost: Unbiased Boosting with Categorical Features[C/OL]. [2019-01-01]. https://arxiv.org/pdf/1706.09516.pdf.
[11] 詹晨迪,凌震华,戴礼荣.面向知识库问答中复述问句评分的词向量构建方法.模式识别与人工智能, 2016, 29(9): 825-831.
(ZHAN C D, LING Z H, DAI L R. Learning Word Embeddings for Paraphrase Scoring in Knowledge Base Based Question Answering. Pattern Recognition and Artificial Intelligence, 2016, 29(9):825-831.)
[12] PENNINGTON J, SOCHER R, MANNING C. Glove: Global Ve-ctors for Word Representation // Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2014: 1532-1543.
[13] 吴运兵,朱丹红,廖祥文,等.路径张量分解的知识图谱推理算法.模式识别与人工智能, 2017, 30(5): 473-480.
(WU Y B, ZHU D H, LIAO X W, et al. Knowledge Graph Reasoning Based on Paths of Tensor Factorization. Pattern Recognition and Artificial Intelligence, 2017, 30(5): 473-480.
[14] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating Embeddings for Modeling Multi-relational Data[C/OL]. [2019-01-01]. http://www.thespermwhale.com/jaseweston/papers/CR_paper_nips13.pdf.
[15] WANG Z, ZHANG J W, FENG J L, et al. Knowledge Graph Embedding by Translating on Hyperplanes // Proc of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 1112-1119.
[16] LIN Y K, LIU Z Y, SUN M S, et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion // Proc of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2015: 2181-2187.
[17] JI G L,HE S Z, XU L H, et al. Knowledge Graph Embedding via Dynamic Mapping Matrix // Proc of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg, USA: ACL, 2015, I: 687-696.
[18] CAI Q Q, YATES A. Large-Scale Semantic Parsing via Schema Matching and Lexicon Extension // Proc of the 51st Annual Mee-ting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2013, 1: 423-433.
[19] BERANT J, CHOU A, FROSTIG R, et al. Semantic Parsing on Freebase from Question-Answer Pairs // Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2013: 1533-1544.
[20] QIU Y Q, LI M L, WANG Y Z, et al. Hierarchical Type Constrained Topic Entity Detection for Knowledge Base Question Answering // Proc of the Companion of the Web Conference. Berlin, Germany: Springer, 2018: 35-36.
[21] BAST H, HAUSSMANN E. More Accurate Question Answering on Freebase // Proc of the 24th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2015: 1431-1440.
[22] CHEN B, AN B, SUN L, et al. Semi-Supervised Lexicon Learning for Wide-Coverage Semantic Parsing // Proc of the 27th International Conference on Computational Linguistics. Stroudsburg, USA: ACL, 2018: 892-904.
[23] XU K, REDDY S, FENG Y S, et al. Question Answering on Freebase via Relation Extraction and Textual Evidence // Proc of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2016, I: 2326-2336.
[24] JAIN S. Question Answering over Knowledge Base Using Factual Memory Networks // Proc of the NAACL Student Research Workshop. Stroudsburg, USA: ACL, 2016: 109-115.
[25] WANG Y, ZHANG R C, XU C, et al. The APVA-TURBO Approach to Question Answering in Knowledge Base // Proc of the 27th International Conference on Computational Linguistics. Stroudsburg, USA: ACL, 2018: 1998-2009. |