[1] WANG Z, BOVIK A C. Modern Image Quality Assessment. San Rafael, USA: Morgan & Claypool, 2006.
[2] WANG Z, BOVIK A C, LU L G. Why Is Image Quality Assessment so Difficult // Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, USA: IEEE, 2002, IV: 3313-3316.
[3] WANG Z, BOVIK A C, SHEIKH H R, et al. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[4] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale Structural Similarity for Image Quality Assessment // Proc of the IEEE Confe-rence Record of the 37th Asilomar Conference on Signals, Systems and Computers. Washington, USA: IEEE, 2003, II: 9-12.
[5] CHEN G H, YANG C L, XIE S L, et al. Gradient-Based Structural Similarity for Image Quality Assessment // Proc of the International Conference on Image Processing. Washington, USA: IEEE, 2006: 2929-2932.
[6] WANG Z, SIMONCELLI E P. Translation Insensitive Image Similarity in Complex Wavelet Domain // Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, USA: IEEE, 2005, II: 573-576.
[7] LI C F, BOVIK A C. Three-Component Weighted Structural Similarity Index. Proc of SPIE, 2009, 7242. DOI: 10.1117/12.811821.
[8] WANG Z, LI Q. Information Content Weighting for Perceptual Image Quality Assessment. IEEE Transactions on Image Process, 2011, 20(5): 1185-1198.
[9] DAMERA-VENKATA N, KITE T D, GEISLER W S, et al. Image Quality Assessment Based on a Degradation Model. IEEE Transactions on Image Processing, 2000, 9(4): 636-650.
[10] CHANDLER D M, HEMAMI S S. VSNR: A Wavelet-Based Vi-sual Signal-to-Noise Ratio for Natural Images. IEEE Transactions on
Image Processing, 2007, 16(9): 2284-2298.
[11] SHEIKH H R, BOVIK A C, VECIANA D. An Information Fidelity Criterion for Image Quality Assessment Using Natural Scene Statistics. IEEE Transactions on Image Process, 2005, 14(12): 2117-2128.
[12] SHEIKH H R, BOVIK A C. Image Information and Visual Quality. IEEE Transactions on Image Process, 2006, 15(2): 430-444.
[13] LARSON E C, CHANDLER D M. Most Apparent Distortion: Full-Reference Image Quality Assessment and the Role of Strategy. Journal of Electronic Imaging, 2010, 19(1). DOI: 10.1117/1.3267105.
[14] ZHANG L, ZHANG L, MOU X Q, et al. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
[15] ZHANG L, SHEN Y, LI H Y. VSI: A Visual Saliency-Induced Index for Perceptual Image Quality Assessment. IEEE Transactions on Image Processing, 2014, 23(10): 4270-4281.
[16] LIU A M, LIN W S, NARWARIA M. Image Quality Assessment Based on Gradient Similarity. IEEE Transactions on Image Proce-ssing, 2012, 21(4): 1500-1512.
[17] XUE W F, ZHANG L, MOU X Q, et al. Gradient Magnitude Si-milarity Deviation: A Highly Efficient Perceptual Image Quality Index. IEEE Transactions on Image Processing, 2014, 23(2): 684-695.
[18] WANG T H, ZHANG L, JIA H Z, et al. Multiscale Contrast Similarity Deviation: An Effective and Efficient Index for Perceptual Image Quality Assessment. Signal Processing: Image Communication, 2016, 45: 1-9.
[19] PONOMARENKO N, IEREMEIEV O, LUKIN V, et al. Color Image Database TID2013: Peculiarities and Preliminary Results // Proc of the European Workshop on Visual Information Processing. Washington, USA: IEEE, 2013: 106-111.
[20] JEFFREY L. A Visual Discrimination Model for Imaging System Design and Evaluation // PELI E, ed. Visual Models for Target Detection and Recognition. Singapore, Singapore: World Scientific, 1995: 207-220.
[21] SAFRANEK R J, JOHNSTON J D. A Perceptually Tuned Sub-band Image Coder with Imaging Dependent Quantization and Post-Quantization Data Compression // Proc of the IEEE Conference on Acoustics, Speech, and Signal Processing. Washington, USA: IEEE, 1989: 1945-1948.
[22] HOU X D, ZHANG L Q. Saliency Detection: A Spectral Residual Approach // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2007. DOI: 10.1109/CVPR.2007.383267.
[23] KOVESI P. Image Features from Phase Congruency. Journal of Computer Vision, 1999, 1(3): 1-26.
[24] 贾惠珍,孙权森,王同罕.结合感知特征和自然场景统计的无参考图像质量评价.中国图象图形学报, 2014, 19(6): 859-867.
(JIA H Z, SUN Q S, WANG T H. Blind Image Quality Assessment Based on Perceptual Features and Natural Scene Statistics. Journal of Image and Graphics, 2014, 19(6): 859-867.)
[25] 吴 帅,徐 勇,赵东宁.基于深度卷积网络的目标检测综述.模式识别与人工智能, 2018, 31(4): 335-346.
(WU S, XU Y, ZHAO D N. Survey of Object Detection Based on Deep Convolutional Network. Pattern Recognition and Artificial Intelligence, 2018, 31(4): 335-346.)
[26] NGUYEN A, KIM J, OH H, et al. Deep Visual Saliency on Stere-oscopic Images. IEEE Transactions on Image Processing, 2019, 28(4): 1939-1953.
[27] BASAK D, PAL S, PATRANABIS D C. Support Vector Regression. Neural Information Processing, 2007, 11(10): 203-224.
[28] WANG T H, ZHANG L, JIA H Z. An Effective General-Purpose NR-IQA Model Using Natural Scene Statistics(NSS) of the Luminance Relative Order. Signal Processing(Image Communication), 2019, 71: 100-109.
[29] BREIMAN L. Random Forests. Machine Learning, 2001, 45(1): 5-32.
[30] TOMANDL D, SCHOBER A. A Modified General Regression Neural Network(MGRNN) with New, Efficient Training Algorithms as a Robust ′Black Box′-Tool for Data Analysis. Neural Networks, 2001, 14(8): 1023-1034. |