模式识别与人工智能
Sunday, Apr. 13, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2019, Vol. 32 Issue (10): 909-916    DOI: 10.16451/j.cnki.issn1003-6059.201910005
Papers and Reports Current Issue| Next Issue| Archive| Adv Search |
Semi-supervised Preference Learning Algorithm
ZHAO Min1, LIU Jinglei1
1.School of Computer and Control Engineering, Yantai University, Yantai 264005

Download: PDF (536 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  

To improve low robustness and reconstruction accuracy of recommendation system, a semi-supervised preference learning algorithm is proposed to obtain potential preferences via preference learning and implement recommendations. The l2,1 norm is utilized as the regularization of the optimization objective function to eliminate the noises and outliers. The graph Laplacian regularization is employed to integrate the side information of UI matrix to realize multi-image fusion and improve recommendation precision. The experiments on Movielens 10M and Netflix datasets indicate that the proposed algorithm produces high precision, speed and robustness.

Key wordsSemi-supervision      Preference Learning      Robustness      Laplace Regularization      l2,1 Norm     
Received: 17 May 2019     
ZTFLH: TP 18  
Fund:

Supported by National Natural Science Foundation of China(No.61572419,61773331,61703360)

Corresponding Authors: LIU Jinglei, Ph.D., professor. His research interests include artificial intelligent and theoretical computer science.   
About author:: ZHAO Min, master student. Her research interests include robustness of semi-supervised preference learning.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHAO Min
LIU Jinglei
Cite this article:   
ZHAO Min,LIU Jinglei. Semi-supervised Preference Learning Algorithm[J]. , 2019, 32(10): 909-916.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/10.16451/j.cnki.issn1003-6059.201910005      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2019/V32/I10/909
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn