模式识别与人工智能
Saturday, May. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2020, Vol. 33 Issue (6): 559-567    DOI: 10.16451/j.cnki.issn1003-6059.202006009
Researches and Applications Current Issue| Next Issue| Archive| Adv Search |
Stochastic Gradient Descent Method of Convolutional Neural Network Using Fractional-Order Momentum
KAN Tao1, GAO Zhe1,2, YANG Chuang1
1. School of Mathematics, Liaoning University, Shenyang 110036
2. College of Light Industry, Liaoning University, Shenyang 110036

Download: PDF (697 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The stochastic gradient descent method may converge to a local optimum. Aiming at this problem, a stochastic gradient descent method of convolutional neural network using fractional-order momentum is proposed to improve recognition accuracy and learning convergence rate of convolution neural networks. By combining the traditional momentum-based stochastic gradient descent method with fractional-order difference method, the parameter updating method is improved. The influence of fractional-order on the training result of network parameters is discussed, and an order adjustment method is produced. The validity of the proposed parameters training method is verified and analyzed on MNIST dataset and CIFAR-10 dataset. The experimental results show that the proposed method improves the recognition accuracy and learning convergence rate of convolutional neural networks.
Key wordsConvolutional Neural Network      Fractional-Order Difference      Stochastic Gradient Descent     
Received: 19 January 2020     
ZTFLH: TP 183  
Fund:Natural Science Foundation of Liaoning Province(No.20180520009), Liaoning Revitalization Talents Program(No.XLYC1807229), China Postdoctoral Science Foundation(No.2019M651206), Scientific Research Fund of Liaoning University(No.LDGY201920)
Corresponding Authors: GAO Zhe, Ph.D., associate professor. Her research interests include fractional-order systems and controls.   
About author:: KAN Tao, master student. His research interests include image processing and deep learning. YANG Chuang, master student. Her research interests include fractional-order control system.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
KAN Tao
GAO Zhe
YANG Chuang
Cite this article:   
KAN Tao,GAO Zhe,YANG Chuang. Stochastic Gradient Descent Method of Convolutional Neural Network Using Fractional-Order Momentum[J]. , 2020, 33(6): 559-567.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/10.16451/j.cnki.issn1003-6059.202006009      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2020/V33/I6/559
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn