[1] 姜慧研,冯锐杰.基于改进的变分水平集和区域生长的图像分割方法的研究.电子学报, 2012, 40(8): 1659-1664.
(JIANG H Y, FENG R J. Image Segmentation Method Research Based on Improved Variational Level Set and Region Growth. Acta Electronica Sinica, 2012, 40(8): 1659-1664.)
[2] 李 敏,梁久祯,廖翠萃.基于聚类信息的活动轮廓图像分割模型.模式识别与人工智能, 2015, 28(7): 665-672.
(LI M, LIANG J Z, LIAO C C. Active Contour Model for Image Segmentation Based on Clustering Information. Pattern Recognition and Artificial Intelligence, 2015, 28(7): 665-672.)
[3] 张荣国,刘小君,董 磊,等.物体轮廓形状超像素图割快速提取方法.模式识别与人工智能, 2015, 28(4): 344-353.
(ZHANG R G, LIU X J, DONG L, et al. Superpixel Graph Cuts Rapid Algorithm for Extracting Object Contour Shapes. Pattern Reco-gnition and Artificial Intelligence, 2015, 28(4): 344-353.)
[4] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation // Proc of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
[5] HAN X. Automatic Liver Lesion Segmentation Using a Deep Convo-lutional Neural Network Method[C/OL]. [2021-05-21]. https://arxiv.org/pdf/1704.07239.pdf.
[6] LI X M, CHEN H, QI X J, et al. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Vo-lumes. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674.
[7] OKTAY O, SCHLEMTER J, LE FOLGOC L, et al. Attention U-Net: Learning Where to Look for the Pancreas[C/OL]. [2021-05-21]. https://arxiv.org/pdf/1804.03999v2.pdf.
[8] LONG J, SHELHAMER E, DARRELL T. Fully Convolutional Networks for Semantic Segmentation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 3431-3440.
[9] HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 770-778.
[10] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 2261-2269.
[11] HE K M, ZHANG X Y, REN S Q, et al. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1904-1916.
[12] SPERINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for Simplicity: The All Convolutional Net[C/OL]. [2021-05-21]. https://arxiv.org/pdf/1412.6806.pdf.
[13] YU F, KOLTUN V. Multi-scale Context Aggregation by Dilated Con-volutions[C/OL]. [2021-05-21]. https://arxiv.org/pdf/1511.07122v1.pdf.
[14] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature Pyramid Networks for Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 936-944.
[15] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local Neural Networks // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 7794-7803.
[16] ZHANG D, ZHANG H W, TANG J H, et al. Feature Pyramid Transformer[C/OL]. [2021-05-21]. https://arxiv.org/pdf/2007.09451.pdf.
[17] WOO S, PARK J, Lee J Y, et al. CBAM: Convolutional Block Attention Module // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
[18] BILIC P, CHRIST P F, VORONTSOV E, et al. The Liver Tumor Segmentation Benchmark[C/OL]. [2021-05-21]. https://arxiv.org/pdf/1901.04056.pdf.
[19] CHRIST P F, ELSHAER M E A, ETTLINGER F, et al. Automa-tic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields // Proc of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2016: 415-423.
[20] KAVUR A E, GEZER N S, BARIS M, et al. CHAOS Challenge-Combined(CT-MR) Healthy Abdominal Organ Segmentation. Medical Image Analysis, 2021, 69. DOI: 10.1016/j.media.2020.101950.
[21] CAI K, YANG R Q, CHEN H Z, et al. A Framework Combining Window Width-Level Adjustment and Gaussian Filter-Based Multi-Resolution for Automatic Whole Heart Segmentation. Neurocompu-ting, 2017, 220: 138-150.
[22] SAHI K, JACKSON S, WIEBE E. et al. The Value of "Liver Windows" Settings in the Detection of Small Renal Cell Carcinomas on Unenhanced Computed Tomography. Canadian Association of Radiologists Journal, 2014, 65(1): 71-76.
[23] LIU Z, HAN K, WANG Z H, et al. Automatic Liver Segmentation from Abdominal CT Volumes Using Improved Convolution Neural Networks. Multimedia Systems, 2020, 27: 111-124.
[24] LI X, WANG W H, HU X L, et al. Selective Kernel Networks // Proc of the IEEE Conference on Computer Vision and Pattern Re-cognition. Washington, USA: IEEE, 2019: 510-519.
[25] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[26] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation // Proc of the International Workshop on Deep Learning in Medical Image Analysis. Berlin, Germany: Springer, 2018: 3-11.
[27] GU Z W, CHENG J, FU H Z, et al. CE-Net: Context Encoder Network for 2D Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281-2292.
[28] FAN T L, WANG G L, WANG X, et al. MSN-Net: A Multi-scale Context Nested U-Net for liver Segmentation. Signal, Image and Video Processing, 2021, 15: 1089-1097 |