[1] MACQUEEN J. Some Methods for Classification and Analysis of Multivariate Observations // Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA: University of California, 1967: 281-297.
[2] NG A Y, JORDAN M I, WEISS Y. On Spectral Clustering: Analysis and an Algorithm // DIETTERICH T G, BECKER S, GHAHRAMANI Z, eds. Advances in Neural Information Processing Systems 14. Cambridge, USA: The MIT Press, 2002: 849-856.
[3] MAITRA R. Initializing Partition-Optimization Algorithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6(1): 144-157.
[4] HU Q B, XIE S H, LIN S Y, et al. Clustering Embedded Approaches for Efficient Information Network Inference. Data Science and Engineering, 2016, 1: 29-40.
[5] RAY S, TURI R H. Determination of Number of Clusters in k-means Clustering and Application in Colour Image Segmentation // Proc of the 4th International Conference on Advances in Pattern Re-cognition and Digital Techniques. Berlin, Germany: Springer, 1999: 137-143.
[6] DE AMORIM R C, HENNIG C. Recovering the Number of Clusters in Data Sets with Noise Features Using Feature Rescaling Factors. Information Sciences, 2015, 324: 126-145.
[7] HENNIG C, LIAO T F. How to Find an Appropriate Clustering for Mixed-Type Variables with Application to Socio-Economic Stratification. Journal of the Royal Statistical Society(Applied Statistics), 2013, 62(3): 309-369.
[8] FORGEY E. Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of Classification. Biometrics, 1965, 21(3): 768-769.
[9] MILLER J W, HARRISON M T. Mixture Models with a Prior on the Number of Components. Journal of the American Statistical Association, 2018, 113(521): 340-356.
[10] AYED F, CARON F. Nonnegative Bayesian Nonparametric Factor Models with Completely Random Measures for Community Detection. Statistics and Computing, 2019, 31(5). DOI: 10.1007/s11222-021-10037-3.
[11] THORNDIKE R L. Who Belongs in the Family? Psychometrika, 1953, 18(4): 267-276.
[12] ROUSSEEUW P J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 1987, 20: 53-65.
[13] TIBSHIRANI R, WALTHER G, HASTIE T. Estimating the Number of Clusters in a Data Set via the Gap Statistic. Journal of the Royal Statistical Society(Statistical Methodology), 2001, 63(2): 411-423.
[14] DUDOIT S, FRIDLYAND J. A Prediction-Based Resampling Me-thod for Estimating the Number of Clusters in a Dataset. Genome Biology, 2002, 3(7). DOI: 10.1186/gb-2002-3-7-research0036.
[15] SUGAR C A, JAMES G M. Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach. Journal of the American Statistical Association, 2003, 98(463): 750-763.
[16] MOHAJER M, ENGLMEIER K H, SCHMID V J. A Comparison of Gap Statistic Definitions with and without Logarithm Function[C/OL]. [2021-09-26].https://arxiv.org/pdf/1103.4767v1.pdf.
[17] YANG M S, WU K L. A Modified Mountain Clustering Algorithm. Pattern Analysis and Applications, 2005, 8(1): 125-138.
[18] SHARMA K K, SEAL A. Multi-view Spectral Clustering for Uncertain Objects. Information Sciences, 2021, 547: 723-745.
[19] MA Z Z, LAI Y P, XIE J Y, et al. Dirichlet Process Mixture of Generalized Inverted Dirichlet Distributions for Positive Vector Data with Extended Variational Inference. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS.2021.3072209.
[20] DINARI O, YU A, FREIFELD O, et al. Distributed MCMC Infe-rence in Dirichlet Process Mixture Models Using Julia // Proc of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Washington, USA: IEEE, 2019: 518-525.
[21] WANG C, PAN S R, HU R Q, et al. Attributed Graph Clus-tering: A Deep Attentional Embedding Approach // Proc of the 28th International Joint Conference on Artificial Intelligence. San Francisco, USA: IJCAI, 2019: 3670-3676.
[22] ZHU X J. Semi-Supervised Learning Literature Survey. Technical Report, 1530. Madison, USA: University of Wisconsin-Madison, 2005.
[23] ESTER M, KRIEGEL H P, SANDER J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise // Proc of the 2nd International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 1996: 226-231.
[24] RODRIGUEZ A, LAIO A. Clustering by Fast Search and Find of Density Peaks. Science, 2014, 344(6191): 1492-1496.
[25] MASUD M A, HUANG J Z, WEI C H, et al. I-nice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Information Sciences, 2018, 466: 129-151.
[26] HURVICH C M, TSAI C L. Regression and Time Series Model Selection in Small Samples. Biometrika, 1989, 76(2): 297-307.
[27] SUGIURA N. Further Analysts of the Data by Akaike's Information Criterion and the Finite Corrections: Further Analysts of the Data by Akaike's. Communications in Statistics-Theory and Methods, 1978, 7(1): 13-26.
[28] BECKMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles. ACM SIGMOD Record, 1990, 19(2): 322-331.
[29] ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS: Ordering Points to Identify the Clustering Structure. ACM Sigmod Record, 1999, 28(2): 49-60.
[30] XU X W, ESTER M, KRIEGEL H P, et al. A Distribution-Based Clustering Algorithm for Mining in Large Spatial Databases // Proc of the 14th International Conference on Data Engineering. Wa-shington, USA: IEEE, 1998: 324-331.
[31] KAUFMAN L, ROUSSEEUW P J. Finding Groups in Data: An Introduction to Cluster Analysis. New York, USA: John Wiley & Sons, 2009.
[32] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: An Efficient Data Clustering Method for Very Large Databases. ACM Sigmod Record, 1996, 25(2): 103-114.
[33] HULL J J. A Database for Handwritten Text Recognition Research. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5): 550-554.
[34] HUBERT L, ARABIE P. Comparing Partitions. Journal of Classification, 1985, 2(1): 193-218.
[35] VINH N X, EPPS J, BAILEY J. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. Journal of Machine Learning Research, 2010, 11: 2837-2854.
[36] DUNN J C. A Graph Theoretic Analysis of Pattern Classification via Tamura's Fuzzy Relation. IEEE Transactions on Systems, Man, and Cybernetics, 1974, 4(3): 310-313.
[37] BEZDEK J C. Objective Function Clustering // BEZDEK J C, ed. Pattern Recognition with Fuzzy Objective Function Algorithms. Berlin, Germany: Springer, 1981: 43-93.
[38] WANG S L, LI Q, ZHAO C F, et al. Extreme Clustering-A Clustering Method via Density Extreme Points. Information Sciences, 2021, 542: 24-39.
[39] HE Y L, WU Y Y, QIN H L, et al. Improved I-nice Clustering Algorithm Based on Density Peaks Mechanism. Information Sciences, 2021, 548: 177-190. |