[1] HASSAN N R, SERENKO A.Patterns of Citations for the Growth of Knowledge: A Foucauldian Perspective. Journal of Documentation, 2019, 75(3): 593-611.
[2] HARWOOD N.An Interview-Based Study of the Functions of Citations in Academic Writing Across Two Disciplines. Journal of Pragmatics, 2009, 41(3): 497-518.
[3] GARFIELD E. Can Citation Indexing be Automated?[C/OL]. [2021-07-15]. http://garfield.library.upenn.edu/essays/V1p084y1962-73.pdf.
[4] MORAVCSIK M J, MURUGESAN P.Some Results on the Function and Quality of Citations. Social Studies of Science, 1975, 5: 86-92.
[5] CHANG Y W.A Comparison of Citation Contexts between Natural Sciences and Social Sciences and Humanities. Scientometrics, 2013, 96(2): 535-553.
[6] PRIDE D, KNOTH P, HARAG J.ACT: An Annotation Platform for Citation Typing at Scale // Proc of the ACM/IEEE Joint Conference on Digital Libraries. Washington, USA: IEEE, 2019: 329-330.
[7] JURGENS D, KUMAR S, HOOVER R, et al. Measuring the Evolution of a Scientific Field through Citation Frames. Transactions of the Association for Computational Linguistics, 2018, 6: 391-406.
[8] TEUFEL S.Argumentative Zoning: Information Extraction from Scientific Text. Ph.D. Dissertation. Edinburgh, UK: University of Edinburgh, 1999.
[9] TEUFEL S, MOENS M.Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status. Computational Linguistics, 2002, 28(4): 409-445.
[10] TEUFEL S, SIDDHARTHAN A, TIDHAR D.Automatic Classification of Citation Function // Proc of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2006: 103-110.
[11] XU H, MARTIN E, MAHIDADIA A.Using Heterogeneous Features for Scientific Citation Classification // Proc of the 13th Conference of the Pacific Association for Computational Linguistics. Berlin, Germany: Springer, 2013. DOI: 10.13140/2.1.2737.2484.
[12] NAKAGAWA T, INUI K, KUROHASHI S.Dependency Tree-Ba-sed Sentiment Classification Using CRFs with Hidden Variables // Proc of the Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2010: 786-794.
[13] MEYERS A.Contrasting and Corroborating Citations in Journal Articles // Proc of Recent Advances in Natural Language Proce-ssing. Stroudsburg, USA: ACL, 2013: 460-466.
[14] ABDULLATIF M, KOH Y S, DOBBIE G, et al. Verb Selection Using Semantic Role Labeling for Citation Classification // Proc of the Workshop on Computational Scientometrics: Theory & Applications. New York, USA: ACM, 2013: 25-30.
[15] VALENZUELA M, HA V A, ETZIONI O.Identifying Meaningful Citations // Proc of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2015: 21-26.
[16] HASSAN S U, IMRAN M, IQBAL S, et al. Deep Context of Citations Using Machine-Learning Models in Scholarly Full-Text Articles. Scientometrics, 2018, 117(3): 1645-1662.
[17] ROMAN M, SHAHID A, KHAN S, et al. Citation Intent Classification Using Word Embedding. IEEE Access, 2021, 9: 9982-9995.
[18] COHAN A, AMMAR W, VAN ZUYLEN M, et al. Structural Scaffolds for Citation Intent Classification in Scientific Publications // Proc of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies(Long and Short Papers). Stroudsburg, USA: ACL, 2019: 3586-3596.
[19] YOUSIF A, NIU Z D, CHAMBUA J, et al. Multi-task Learning Model Based on Recurrent Convolutional Neural Networks for Citation Sentiment and Purpose Classification. Neurocomputing, 2019, 335: 195-205.
[20] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding // Proc of the Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2019: 4171-4186.
[21] BELTAGY I, LO K, COHAN A.SciBERT: A Pretrained Language Model for Scientific Text // Proc of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: ACL, 2019: 3615-3620.
[22] ZHENG M Z, SHEN D H, SHEN Y L, et al. Improving Self-Supervised Pre-training via a Fully-Explored Masked Language Model [C/OL].[2021-07-15]. https://arxiv.org/pdf/2010.06040.pdf.
[23] MERCIER D, RIZVI S T, RAJASHEKAR V, et al. ImpactCite: An XLNet-Based Solution Enabling Qualitative Citation Impact Analysis Utilizing Sentiment and Intent // Proc of the 13th International Conference on Agents and Artificial Intelligence. Setúbal, Portugal: Scitepress, 2021: 159-168.
[24] YANG Z L, DAI Z H, YANG Y M, et al.XLNet: Generalized Autoregressive Pretraining for Language Understanding // Proc of the 33rd International Conference on Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2019: 5753-5763.
[25] SONG K T, TAN X, QIN T, et al. MPNet: Masked and Permuted Pre-training for Language Understanding[C/OL].[2021-07-15]. https://arxiv.org/pdf/2004.09297.pdf. |