[1] FAN D P, CHENG M M, LIU J J, et al. Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2018: 196-212.
[2] ZHAO J X, LIU J J, FAN D P, et al. EGNet: Edge Guidance Network for Salient Object Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Washington USA: IEEE, 2019: 8778-8787.
[3] TU W C, HE S F, YANG Q X, et al. Real-Time Salient Object Detection with a Minimum Spanning Tree // Proc of the IEEE Confe-rence on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2016: 2334-2342.
[4] XIA C Q, LI J, CHEN X W, et al. What Is and What Is Not a Sa-lient Object? Learning Salient Object Detector by Ensembling Linear Exemplar Regressors // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2017: 4399-4407.
[5] HOU X D, ZHANG L Q.Saliency Detection: A Spectral Residual Approach // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2007. DOI: 10.1109/CVPR.2007.383267.
[6] YAN Q, XU L, SHI J P, et al. Hierarchical Saliency Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2013: 1155-1162.
[7] YANG C, ZHANG L H, LU H C, et al. Saliency Detection via Graph-Based Manifold Ranking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2013: 3166-3173.
[8] LI G B, YU Y Z.Deep Contrast Learning for Salient Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2016: 478-487.
[9] ZHANG D W, MENG D Y, HAN J W.Co-saliency Detection via a Self-Paced Multiple-Instance Learning Framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(5): 865-878.
[10] ZHANG P P, WANG D, LU H C, et al. Learning Uncertain Con-volutional Features for Accurate Saliency Detection // Proc of the IEEE International Conference on Computer Vision. Washington USA: IEEE, 2017: 212-221.
[11] WANG T T, BORJI A, ZHANG L H, et al. A Stagewise Refinement Model for Detecting Salient Objects in Images // Proc of the IEEE International Conference on Computer Vision. Washington USA: IEEE, 2017: 4039-4048.
[12] LI X, YANG F, CHENG H, et al. Contour Knowledge Transfer for Salient Object Detection // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2018: 370-385.
[13] WANG W G, ZHAO S Y, SHEN J B, et al. Salient Object Detection with Pyramid Attention and Salient Edges // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2019: 1448-1457.
[14] SU J M, LI J, ZHANG Y, et al. Selectivity or Invariance: Boun-dary-Aware Salient Object Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Washington USA: IEEE, 2019: 3798-3807.
[15] ZHAO T, WU X Q.Pyramid Feature Attention Network for Sa-liency Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2019: 3080-3089.
[16] HONG S, YOU T, KWAK S, et al. Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network. Proceedings of Machine Learning Research, 2015, 27: 597-606.
[17] MAHADEVAN V, VASCONCELOS N.Saliency-Based Discriminant Tracking // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2009: 1007-1013.
[18] LUO B, HU R M, WANG Y M, et al. Robust Tracking via Sa-liency-Based Appearance Model // Proc of the IEEE International Conference on Image Processing. Washington USA: IEEE, 2014: 417-420.
[19] ZHANG B, TAN S, ZENG Y, et al. Online Pedestrian Tracking via Saliency-Based H-S Histogram // Proc of the IEEE Internatio-nal Symposium on Broadband Multimedia Systems and Broadcasting. Washington USA: IEEE, 2015. DOI: 10.1109/BMSB.2015.7177267.
[20] FAN J L. Contextual Saliency with an Application to Visual Tra-cking // Proc of the 4th International Congress on Image and Signal Processing. Washington, USA: IEEE, 2011, III: 1416-1419.
[21] CAI J, HUANG Y Y, LI P Z.Small Target Tracking in Background Using Saliency-Based Particle Filter // Proc of the Chinese Automation Congress. Washington USA: IEEE, 2018: 1350-1354.
[22] WANG Q, CHEN F, XU W L.Saliency Selection for Robust Vi-sual Tracking // Proc of the IEEE International Conference on Image Processing. Washington USA: IEEE, 2010: 2785-2788.
[23] LI H, WANG Y J.Object of Interest Tracking Based on Visual Saliency and Feature Points Matching // Proc of the 6th International Conference on Wireless, Mobile and Multi-media. Washington USA: IEEE, 2015: 201-205.
[24] FENG W, HAN R Z, GUO Q, et al. Dynamic Saliency-Aware Regularization for Correlation Filter-Based Object Tracking. IEEE Transactions on Image Processing, 2019, 28(7): 3232-3245.
[25] ZHANG Y C, LIU K X, WANG T.End-to-End Visual Object Tracking with Motion Saliency Guidance // Proc of the 39th Chinese Control Conference. Washington USA: IEEE, 2020: 6566-6571.
[26] WANG J, HUANG W C.Object Tracking Based on Saliency and Adaptive Background Constraint // Proc of the 39th Chinese Control Conference. Washington USA: IEEE, 2020: 6533-6538.
[27] CHEN Y C, PATEL V M, CHELLAPPA R, et al. Salient View Selection Based on Sparse Representation // Proc of the 19th IEEE International Conference on Image Processing. Washington USA: IEEE, 2012: 649-652.
[28] ZHANG Z, BI H B, KONG X X, et al. Adaptive Compressed Sensing of Color Images Based on Salient Region Detection. Multimedia Tools and Applications, 2020, 79(21/22): 14777-14791.
[29] FAN D P, JI G P, SUN G L, et al. Camouflaged Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pa-ttern Recognition. Washington USA: IEEE, 2020: 2774-2784.
[30] WANG Y, LI L, YANG X, et al. A Camouflaged Object Detection Model Based on Deep Learning // Proc of the IEEE International Conference on Artificial Intelligence and Information Systems. Washington USA: IEEE, 2020: 150-153.
[31] ZHENG Y F, ZHANG X W, WANG F, et al. Detection of People with Camouflage Pattern via Dense Deconvolution Network. IEEE Signal Processing Letters, 2019, 26(1): 29-33.
[32] ZHANG X, ZHU C.Camouflage Modeling for Moving Object Detection // Proc of the IEEE China Summit and International Conference on Signal and Information Processing. Washington USA: IEEE, 2015: 249-253.
[33] CHEN S K, ZHANG W P, LUO J R, et al. Multi-feature Fusion with Attention and Receptive Field for Camouflaged People Detection // Proc of the China Automation Congress. Washington USA: IEEE, 2021: 2453-2458.
[34] ZUO Q, GUO B F, SHEN H H, et al. An Improved Target Detection Algorithm for Camouflaged Targets // Proc of the 36th Chinese Control Conference. Washington USA: IEEE, 2017: 11478-11482.
[35] BI H B, ZHANG C, WANG K, et al. Towards Accurate Camouflaged Object Detection with In-Layer Information Enhancement and Cross-Layer Information Aggregation. IEEE Transactions on Cognitive and Developmental Systems, 2022. DOI: 10.1109/TCDS.2022.3172331.
[36] HUANG M L, XIA W J, HUANG L L, et al. Passive Ground Camouflage Target Recognition Based on Gray Feature and Texture Feature in SAR Images // Proc of the CIE International Conference on Radar. Washington USA: IEEE, 2016. DOI: 10.1109/RADAR/2016.8059196.
[37] REN J J, HU X W, ZHU L, et al. Deep Texture-Aware Features for Camouflaged Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2021. DOI: 10.1109/TCSVT.2021.3126591.
[38] WANG K, BI H B, ZHANG Y, et al. D2C-Net: A Dual-Branch, Dual-Guidance and Cross-Refine Network for Camouflaged Object Detection. IEEE Transactions on Industrial Electronics, 2022, 69(5): 5364-5374.
[39] LIU Y, ZHANG D W, ZHANG Q, et al. Integrating Part-Object Relationship and Contrast for Camouflaged Object Detection. IEEE Transactions on Information Forensics and Security, 2021, 16: 5154-5166.
[40] CHEN G, LIU S J, SUN Y J, et al. Camouflaged Object Detection via Context-Aware Cross-Level Fusion. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6981-6993.
[41] FAN D P, JI G P, ZHOU T, et al. PraNet: Parallel Reverse Attention Network for Polyp Segmentation // Proc of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin Germany: Springer, 2020: 263-273.
[42] FAN D P, ZHOU T, JI G P, et al. Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637.
[43] WU Y H, GAO S H, MEI J, et al. JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation. IEEE Transactions on Image Processing, 2021, 30: 3113-3126.
[44] NING Z Y, ZHONG S Z, FENG Q J, et al. SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation in Ultrasound Image. IEEE Transactions on Medical Imaging, 2022, 41(2): 476-490.
[45] LI X M, CHEN G S, WANG S Y.Dense-Atrous U-Net with Salient Computing for Accurate Retina Vessel Segmentation // Proc of the IEEE 15th International Conference on Solid-State and Integra-ted Circuit Technology. Washington USA: IEEE, 2020. DOI: 10.1109/ICSICT.49897.2020.9278165.
[46] GU R, WANG G T, SONG T, et al. CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2021, 40(2): 699-711.
[47] ZHAO X Q, ZHANG L H, LU H C.Automatic Polyp Segmentation via Multi-scale Subtraction Network // Proc of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin Germany: Springer, 2021: 120-130.
[48] FAN D P, LI T P, LIN Z, et al. Re-thinking Co-salient Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4339-4354.
[49] CONG R M, LEI J J, FU H Z, et al. Co-saliency Detection for RGBD Images Based on Multi-constraint Feature Matching and Cross Label Propagation. IEEE Transactions on Image Processing, 2018, 27(2): 568-579.
[50] WU K J, LIAO Z B, LIU Q, et al. A Global Co-saliency Guided Bit Allocation for Light Field Image Compression // Proc of the Data Compression Conference. Washington USA: IEEE, 2019: 608.
[51] CONG R M, LEI J J, FU H Z, et al. An Iterative Co-saliency Framework for RGBD Images. IEEE Transactions on Cybernetics, 2019, 49(1): 233-246.
[52] ZHA Z J, WANG C, LIU D, et al. Robust Deep Co-saliency Detection with Group Semantic and Pyramid Attention. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(7): 2398-2408.
[53] WEI L N, ZHAO S S, BOURAHLA O E F, et al. Deep Group-Wise Fully Convolutional Network for Co-saliency Detection with Graph Propagation. IEEE Transactions on Image Processing, 2019, 28(10): 5052-5063.
[54] SONG H K, LIU Z, XIE Y F, et al. RGBD Co-saliency Detection via Bagging-Based Clustering. IEEE Signal Processing Letters, 2016, 23(12): 1722-1726.
[55] JIN Z G, LI J K, LI D.Co-saliency Detection for RGBD Images Based on Effective Propagation Mechanism. IEEE Access, 2019, 7: 141311-141318.
[56] WANG W G, SHEN J B, SUN H Q, et al. Video Co-saliency Guided Co-segmentation. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(8): 1727-1736.
[57] NIE G Y, CHENG M M, LIU Y, et al. Multi-level Context Ultra-Aggregation for Stereo Matching // Proc of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2019: 3278-3286.
[58] RAPANTZIKOS K, AVRITHIS Y, KOLLIAS S.Dense Saliency-Based Spatiotemporal Feature Points for Action Recognition // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2009: 1454-1461.
[59] ZHU J Y, WU J J, XU Y, et al. Unsupervised Object Class Discovery via Saliency-Guided Multiple Class Learning // Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2012: 3218-3225.
[60] ZHANG F, DU B, ZHANG L P.Saliency-Guided Unsupervised Feature Learning for Scene Classification. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2175-2184.
[61] FAN D P, WANG W G, CHENG M M, et al. Shifting More Attention to Video Salient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2019: 8546-8556.
[62] WANG W G, SHEN J B, YANG R G, et al. Saliency-Aware Video Object Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(1): 20-33.
[63] SONG H M, WANG W G, ZHAO S Y, et al. Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2018: 744-760.
[64] WANG W G, SHEN J B, SHAO L.Video Salient Object Detection via Fully Convolutional Networks. IEEE Transactions on Image Processing, 2018, 27(1): 38-49.
[65] SHIMODA W, YANAI K.Distinct Class-Specific Saliency Maps for Weakly Supervised Semantic Segmentation // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2016: 218-234.
[66] YU Z, ZHUGE Y Z, LU H C, et al. Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation // Proc of the IEEE/CVF International Conference on Computer Vision. Washington USA: IEEE, 2019: 7222-7232.
[67] ZHAO R, OYANG W L, WANG X G.Person Re-identification by Saliency Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 356-370.
[68] MARTINEL N, MICHELONI C, FORESTI G L.Kernelized Saliency-Based Person Re-identification Through Multiple Metric Lear-ning. IEEE Transactions on Image Processing, 2015, 24(12): 5645-5658.
[69] LIU G H, FAN D P.A Model of Visual Attention for Natural Image Retrieval // Proc of the International Conference on Information Science and Cloud Computing Companion. Washington USA: IEEE, 2013: 728-733.
[70] ZHANG J, FAN D P, DAI Y C, et al. UC-Net: Uncertainty Inspired RGB-D Saliency Detection via conditional Variational Autoencoders // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2020: 8579-8588.
[71] ZHAO J X, CAO Y, FAN D P, et al. Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2019: 3922-3931.
[72] QU L Q, HE S F, ZHANG J W, et al. RGBD Salient Object Detection via Deep Fusion. IEEE Transactions on Image Processing, 2017, 26(5): 2274-2285.
[73] FAN D P, LIN Z, ZHANG Z, et al. Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2075-2089.
[74] WANG L J, LU H C, RUAN X, et al. Deep Networks for Saliency Detection via Local Estimation and Global Search // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2015: 3183-3192.
[75] KUEN J, WANG Z H, WANG G.Recurrent Attentional Networks for Saliency Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2016: 3668-3677.
[76] HU P, SHUAI B, LIU J, et al. Deep Level Sets for Salient Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2017: 540-549.
[77] ZHANG J, ZHANG T, DAI Y C, et al. Deep Unsupervised Sa-liency Detection: A Multiple Noisy Labeling Perspective // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2018: 9029-9038.
[78] CAO C S, HUANG Y Z, WANG Z L, et al. Lateral Inhibition-Inspired Convolutional Neural Network for Visual Attention and Saliency Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 6690-6697.
[79] LI B, SUN Z X, GUO Y Q.SuperVAE: Superpixelwise Variational Autoencoder for Salient Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8569-8576.
[80] LI G B, XIE Y, LIN L, et al. Instance-Level Salient Object Segmentation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2017: 247-256.
[81] CHEN X W, ZHENG A L, LI J, et al. Look, Perceive and Segment: Finding the Salient Objects in Images via Two-Stream Fixation-Semantic CNNs // Proc of the IEEE International Conference on Computer Vision. Washington USA: IEEE, 2017: 1050-1058.
[82] ZHUGE Y Z, ZENG Y, LU H C.Deep Embedding Features for Salient Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 9340-9347.
[83] LUO Z M, MISHRA A, ACHKAR A, et al. Non-local Deep Features for Salient Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2017: 6593-6601.
[84] LIU N, HAN J W.DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2016: 678-686.
[85] WANG L Z, WANG L J, LU H C, et al. Saliency Detection with Recurrent Fully Convolutional Networks // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2016: 825-841.
[86] HOU Q B, CHENG M M, HU X W, et al. Deeply Supervised Salient Object Detection with Short Connections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 815-828.
[87] ZHANG P P, WANG D, LU H C, et al. Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection // Proc of the IEEE International Conference on Computer Vision. Washington USA: IEEE, 2017: 202-211.
[88] LIU N, HAN J W, YANG M H.PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2018: 3089-3098.
[89] DENG Z J, HU X W, ZHU L, et al. R3Net: Recurrent Residual Refinement Network for Saliency Detection // Proc of the 27th International Joint Conference on Artificial Intelligence. San Francisco USA: IJCAI, 2018: 684-690.
[90] DESINGH K, KRISHNA K M, RAJAN D, et al. Depth Really Matters: Improving Visual Salient Region Detection with Depth // Proc of the 24th British Machine Vision Conference. Bristol UK: BMVC, 2013. DOI: 10.5244/C.27.98.
[91] CHENG Y P, FU H Z, WEI X X, et al. Depth Enhanced Saliency Detection Method // Proc of the International Conference on Internet Multimedia Computing and Service. New York USA: ACM, 2014: 23-27.
[92] XIAO F, LI B, PENG Y M, et al. Multi-modal Weights Sharing and Hierarchical Feature Fusion for RGBD Salient Object Detection. IEEE Access, 2020, 8: 26602-26611.
[93] CONG R M, LEI J J, FU H Z, et al. Going from RGB to RGBD Saliency: A Depth-Guided Transformation Model. IEEE Transactions on Cybernetics, 2019, 50(8): 3627-3639.
[94] CONG R M, LEI J J, ZHANG C Q, et al. Saliency Detection for Stereoscopic Images Based on Depth Confidence Analysis and Multiple Cues Fusion. IEEE Signal Processing Letters, 2016, 23(6): 819-823.
[95] GUO J F, REN T W, BEI J.Salient Object Detection for RGB-D Image via Saliency Evolution // Proc of the IEEE International Conference on Multimedia and Expo. Washington USA: IEEE, 2016. DOI: 10.1109/ICME.2019.7552907.
[96] CIPTADI A, HERMANS T, REHG J M.An in Depth View of Saliency // Proc of the British Machine Vision Conference. Bristol UK: BMVC, 2013. DOI: 10.5244/C.27.112.
[97] REN J Q, GONG X J, YU L, et al. Exploiting Global Priors for RGB-D Saliency Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington USA: IEEE, 2015: 25-32.
[98] JU R, GE L, GENG W J, et al. Depth Saliency Based on Anisotropic Center-Surround Difference // Proc of the IEEE International Conference on Image Processing. Washington USA: IEEE, 2014: 1115-1119.
[99] FENG D, BARNES N, YOU S D, et al. Local Background Enclosure for RGB-D Salient Object Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2016: 2343-2350.
[100] FAN X X, LIU Z, SUN G L.Salient Region Detection for Stereoscopic Images // Proc of the 19th International Conference on Digital Signal Processing. Washington USA: IEEE, 2014: 454-458.
[101] GUO J F, REN T W, BEI J, et al. Salient Object Detection in RGB-D Image Based on Saliency Fusion and Propagation // Proc of the 7th International Conference on Internet Multimedia Computing and Service. New York USA: ACM, 2015. DOI: 10.1145/2808492.2808551.
[102] TANG Y L, TONG R F, TANG M, et al. Depth Incorporating with Color Improves Salient Object Detection. The Visual Computer, 2016, 32(1): 111-121.
[103] DU H, LIU Z, SONG H K, et al. Improving RGBD Saliency Detection Using Progressive Region Classification and Saliency Fusion. IEEE Access, 2016, 4: 8987-8994.
[104] CHEN H, LI Y F, SU D.RGB-D Saliency Detection by Multi-stream Late Fusion Network // Proc of the International Confe-rence on Computer Vision Systems. Berlin Germany: Springer, 2017: 459-468.
[105] SHIGEMATSU R, FENG D, YOU S D, et al. Learning RGB-D Salient Object Detection Using Background Enclosure, Depth Contrast, and Top-Down Features // Proc of the IEEE International Conference on Computer Vision Workshops. Washington USA: IEEE, 2017: 2749-2757.
[106] ZHU C B, LI G, WANG W M, et al. An Innovative Salient Object Detection Using Center-Dark Channel Prior // Proc of the IEEE International Conference on Computer Vision Workshops. Washington USA: IEEE, 2017: 1509-1515.
[107] LIANG F F, DUAN L J, WEI M, et al. Stereoscopic Saliency Model Using Contrast and Depth-Guided-Background Prior. Neurocomputing, 2018, 275: 2227-2238.
[108] LANG C Y, NGUYEN T V, KATTI H, et al. Depth Matters: Influence of Depth Cues on Visual Saliency // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2012: 101-115.
[109] PENG H W, LI B, XIONG W H, et al. RGBD Salient Object Detection: A Benchmark and Algorithms // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2014: 92-109.
[110] HUANG P S, SHEN C H, HSIAO H F.RGBD Salient Object Detection Using Spatially Coherent Deep Learning Framework // Proc of the IEEE 23rd International Conference on Digital Signal Processing. Washington USA: IEEE, 2018. DOI: 10.1109/ICDSP.2018.8631584.
[111] CHEN H, LI Y F, SU D.Attention-Aware Cross-Modal Cross-Level Fusion Network for RGB-D Salient Object Detection // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington USA: IEEE, 2018: 6821-6826.
[112] LIU Z Y, SHI S, DUAN Q T, et al. Salient Object Detection for RGB-D Image by Single Stream Recurrent Convolution Neural Network. Neurocomputing, 2019, 363: 46-57.
[113] ZHU C B, CAI X, HUANG K, et al. PDNet: Prior-Model Guided Depth-Enhanced Network for Salient Object Detection // Proc of the IEEE International Conference on Multimedia and Expo. Washington USA: IEEE, 2019: 199-204.
[114] WANG N N, GONG X J.Adaptive Fusion for RGB-D Salient Object Detection. IEEE Access, 2019, 7: 55277-55284.
[115] ZHOU X F, LI G Y, GONG C, et al. Attention-Guided RGBD Saliency Detection Using Appearance Information. Image and Vision Computing, 2020, 95. DOI: 10.1016/j.imavis.2020.103888.
[116] LIU Z Y, ZHANG W, ZHAO P.A Cross-Modal Adaptive Gated Fusion Generative Adversarial Network for RGB-D Salient Object Detection. Neurocomputing, 2020, 387: 210-220.
[117] LIANG F F, DUAN L J, MA W, et al. CoCNN: RGB-D Deep Fusion for Stereoscopic Salient Object Detection. Pattern Recognition, 2020, 104. DOI: 10.1016/j.patcog.2020.107329.
[118] LI C Y, CONG R M, KWONG S, et al. ASIF-Net: Attention Steered Interweave Fusion Network for RGB-D Salient Object Detection. IEEE Transactions on Cybernetics, 2021, 51(1): 88-100.
[119] HUANG R, XING Y, ZOU Y B. Triple-Complementary Network for RGB-D Salient Object Detection. IEEE Signal Processing Le-tters, 2020, 27: 775-779.
[120] HAN J W, CHEN H, LIU N, et al. CNNs-Based RGB-D Sa-liency Detection via Cross-View Transfer and Multiview Fusion. IEEE Transactions on Cybernetics, 2018, 48(11): 3171-3183.
[121] PIAO Y R, JI W, LI J J, et al. Depth-Induced Multi-scale Recurrent Attention Network for Saliency Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Wa-shington USA: IEEE, 2019: 7253-7262.
[122] ZHANG M, REN W S, PIAO Y R, et al. Select, Supplement and Focus for RGB-D Saliency Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2020: 3469-3478.
[123] LI N Y, YE J W, JI Y, et al. Saliency Detection on Light Field. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1605-1616.
[124] ZHANG J, WANG M, GAO J, et al. Saliency Detection with a Deeper Investigation of Light Field // Proc of the 24th International Joint Conference on Artificial Intelligence. San Francisco USA: IJCAI, 2015: 2212-2218.
[125] LI N Y, SUN B L, YU J Y.A Weighted Sparse Coding Framework for Saliency Detection // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2015: 5216-5223.
[126] ZHANG J, WANG M, LIN L, et al. Saliency Detection on Light Field: A Multi-cue Approach. ACM Transactions on Multimedia Computing, Communications and Applications, 2017, 13(3). DOI: 10.1145/3107956.
[127] WANG T T, PIAO Y R, LU H C, et al. Deep Learning for Light Field Saliency Detection // Proc of the IEEE/CVF International Conference on Computer Vision. Washington USA: IEEE, 2019: 8837-8847.
[128] ZHANG M, LI J J, JI W, et al.Memory-Oriented Decoder for Light Field Salient Object Detection // Proc of the 33rd International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 898-908.
[129] PIAO Y R, RONG Z K, ZHANG M, et al. Exploit and Replace: An Asymmetrical Two-Stream Architecture for Versatile Light Field Saliency Detection. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11865-11873.
[130] ZHANG M, JI W, PIAO Y R, et al. LFNet: Light Field Fusion Network for Salient Object Detection. IEEE Transactions on Image Processing, 2020, 29: 6276-6287.
[131] PIAO Y R, JIANG Y Y, ZHANG M, et al. PANet: Patch-Aware Network for Light Field Salient Object Detection. IEEE Transactions on Cybernetics, 2023, 53(1): 379-391.
[132] LIU N, ZHAO W B, ZHANG D W, et al. Light Field Saliency Detection with Dual Local Graph Learning and Reciprocative Guidance // Proc of the IEEE/CVF International Conference on Computer Vision. Washington USA: IEEE, 2021: 4692-4701.
[133] FENG M T, LIU K D, ZHANG L, et al. Learning from Pixel-Level Noisy Label: A New Perspective for Light Field Saliency Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2022: 1746-1756.
[134] JIANG Y, ZHANG W B, FU K R, et al. MEANet: Multi-modal Edge-Aware Network for Light Field Salient Object Detection. Neurocomputing, 2022, 491: 78-90.
[135] NIU Y Z, GENG Y J, LI X Q, et al. Leveraging Stereopsis for Saliency Analysis // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington USA: IEEE, 2012: 454-461.
[136] PIAO Y R, LI X, ZHANG M, et al. Saliency Detection via Depth-Induced Cellular Automata on Light Field. IEEE Transactions on Image Processing, 2020, 29: 1879-1889.
[137] LI G, ZHU C B.A Three-Pathway Psychobiological Framework of Salient Object Detection Using Stereoscopic Technology // Proc of the IEEE International Conference on Computer Vision Workshops. Washington USA: IEEE, 2017: 3008-3014.
[138] PIAO Y R, RONG Z K, ZHANG M, et al. Deep Light-Field-Driven Saliency Detection from a Single View // Proc of the 28th International Joint Conference on Artificial Intelligence. San Francisco USA: IJCAI, 2019: 904-911.
[139] ZHANG J, LIU Y M, ZHANG S P, et al. Light Field Saliency Detection with Deep Convolutional Networks. IEEE Transactions on Image Processing, 2020, 29: 4421-4434.
[140] ZHANG M, ZHANG Y, PIAO Y R, et al. Feature Reintegration over Differential Treatment: A Top-Down and Adaptive Fusion Network for RGB-D Salient Object Detection // Proc of the 28th ACM International Conference on Multimedia. New York USA: ACM, 2020: 4107-4115.
[141] LI G Y, LIU Z, YE L W, et al. Cross-Modal Weighting Network for RGB-D Salient Object Detection // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2020: 665-681.
[142] CHEN H, DENG Y J, LI Y F, et al. RGBD Salient Object Detection via Disentangled Cross-Modal Fusion. IEEE Transactions on Image Processing, 2020, 29: 8407-8416.
[143] CHEN H, LI Y F, SU D.Multi-modal Fusion Network with Multi-scale Multi-path and Cross-Modal Interactions for RGB-D Salient Object Detection. Pattern Recognition, 2019, 86: 376-385.
[144] ZHANG M, FEI S X, LIU J, et al. Asymmetric Two-Stream Architecture for Accurate RGB-D Saliency Detection // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2020: 374-390.
[145] FAN D P, ZHAI Y J, BORJI A, et al. BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network // Proc of the European Conference on Computer Vision. Berlin Germany: Springer, 2020: 275-292.
[146] ZHANG C, CONG R M, LIN Q W, et al. Cross-Modality Discrepant Interaction Network for RGB-D Salient Object Detection // Proc of the 29th ACM International Conference on Multimedia. New York USA: ACM, 2021: 2094-2102.
[147] CHEN H, Li Y F.Three-Stream Attention-Aware Network for RGB-D Salient Object Detection. IEEE Transactions on Image Processing, 2019, 28(6): 2825-2835.
[148] LI G Y, LIU Z, LING H B.ICNet: Information Conversion Network for RGB-D Based Salient Object Detection. IEEE Transactions on Image Processing, 2020, 29: 4873-4884.
[149] LIU N, ZHANG N, HAN J W.Learning Selective Self-Mutual Attention for RGB-D Saliency Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Wa-shington USA: IEEE, 2020: 13753-13762.
[150] WEN H F, YAN C G, ZHOU X F, et al. Dynamic Selective Network for RGB-D Salient Object Detection. IEEE Transactions on Image Processing, 2021, 30: 9179-9192.
[151] ZHANG Y, CHEN G, CHEN Q, et al. Learning Synergistic Attention for Light Field Salient Object Detection[C/OL].[2022-06-20]. https://arxiv.org/pdf/2104.13916.pdf.
[152] ZHANG Y, ZHANG L, HAMIDOUCHE W, et al. CMA-Net: A Cascaded Mutual Attention Network for Light Field Salient Object Detection[C/OL]. [2022-06-20]. https://arxiv.org/pdf/2105.00949.pdf.
[153] ZHANG Q D, WANG S Q, WANG X, et al. A Multi-task Co-llaborative Network for Light Field Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1849-1861.
[154] JING D, ZHANG S, CONG R M, et al. Occlusion-Aware Bi-Directional Guided Network for Light Field Salient Object Detection // Proc of the 29th ACM International Conference on Multimedia. New York, USA: ACM, 2021: 1692-1701.
[155] CHEN C L Z, WEI J P, PENG C, et al. Improved Saliency Detection in RGB-D Images Using Two-Phase Depth Estimation and Selective Deep Fusion. IEEE Transactions on Image Processing, 2020, 29: 4296-4307.
[156] JI W, LI J J, YU S, et al. Calibrated RGB-D Salient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 9466-9476.
[157] JIN W D, XU J, HAN Q, et al. CDNet: Complementary Depth Network for RGB-D Salient Object Detection. IEEE Transactions on Image Processing, 2021, 30: 3376-3390.
[158] LI J J, JI W, BI Q, et al. Joint Semantic Mining for Weakly Supervised RGB-D Salient Object Detection // Proc of the 35th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 11945-11959.
[159] WANG X Q, ZHU L, TANG S L, et al. Boosting RGB-D Sa-liency Detection by Leveraging Unlabeled RGB Images. IEEE Transactions on Image Processing, 2022, 31: 1107-1119.
[160] ZHAO X Q, PANG Y W, ZHANG L H, et al. Self-Supervised Pretraining for RGB-D Salient Object Detection // Proc of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2022: 3463-3471.
[161] PIAO Y R, RONG Z K, ZHANG M, et al. A2dele: Adaptive and Attentive Depth Distiller for Efficient RGB-D Salient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 9057-9066.
[162] FU K R, FAN D P, JI G P, et al. JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 3049-3059.
[163] ZHAO J W, ZHAO Y F, LI J, et al. Is Depth Really Necessary for Salient Object Detection? // Proc of the 28th ACM International Conference on Multimedia. New York, USA: ACM, 2020: 1745-1754.
[164] ZHANG W B, JI G P, WANG Z, et al. Depth Quality-Inspired Feature Manipulation for Efficient RGB-D Salient Object Detection // Proc of the 29th ACM International Conference on Multimedia. New York, USA: ACM, 2021: 731-740.
[165] WU Y H, LIU Y, XU J, et al. MobileSal: Extremely Efficient RGB-D Salient Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 10261-10269.
[166] JI W, LI J J, ZHANG M, et al. Accurate RGB-D Salient Object Detection via Collaborative Learning // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 52-69.
[167] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need // Proc of the 31st International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 6000-6010.
[168] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale[C/OL]. [2022-05-04]. https://arxiv.org/pdf/2010.11929.pdf.
[169] LIU Z Y, WANG Y, TU Z Z, et al. TriTransNet: RGB-D Salient Object Detection with a Triplet Transformer Embedding Network // Proc of the 29th ACM International Conference on Multimedia. New York, USA: ACM, 2021: 4481-4490.
[170] PANG Y W, ZHAO X Q, ZHANG L H, et al. TransCMD: Cross-Modal Decoder Equipped with Transformer for RGB-D Sa-lient Object Detection[C/OL]. [2022-06-20]. https://arxiv.org/pdf/2112.02363v1.pdf.
[171] TANG B, LIU Z Y, TAN Y C, et al. HRTransNet: HRFormer-Driven Two-Modality Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(2): 728-742.
[172] ZHU H Q, SUN X, LI Y X, et al. DFTR: Depth-Supervised Hierarchical Feature Fusion Transformer for Salient Object Detection[C/OL]. [2022-06-20]. https://arxiv.org/pdf/2203.06429v1.pdf.
[173] FANG X, ZHU J S, SHAO X L, et al. GroupTransNet: Group Transformer Network for RGB-D Salient Object Detection[C/OL]. [2022-06-20]. https://arxiv.org/pdf/2203.10785.pdf.
[174] WANG Y, JIA X, ZHANG L, et al. Transformer-Based Network for RGB-D Saliency Detection[C/OL]. [2022-06-20]. https://arxiv.org/pdf/2112.00582.pdf.
[175] ZENG C, KWONG S. Dual Swin-Transformer Based Mutual Interactive Network for RGB-D Salient Object Detection[C/OL]. [2022-06-20]. https://arxiv.org/pdf/2206.03105.pdf.
[176] LIU N, ZHANG N, WAN K Y, et al. Visual Saliency Transfor-mer // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 4702-4712.
[177] YUAN L, CHEN Y P, WANG T, et al. Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2021: 538-547. |