[1] ARNAL-VELASCO D, PAZ-MARTÍN D. Extension of Patient Safety Initiatives to Perioperative Care. Current Opinion in Anesthesiology, 2022, 35(6): 717-722.
[2] JIN H, LIU J W. Application of the Hybrid Operating Room in Surgery: A Systematic Review. Journal of Investigative Surgery, 2022, 35(2): 378-389.
[3] NIU L, LI H Y, TANG W, et al. Evolving Safety Practices in the Setting of Modern Complex Operating Room: Role of Nurses. Journal of Biological Regulators and Homeostatic Agents, 2017, 31(3): 659-665.
[4] ESPINOZA P, LETELIER L M G, LEPPE M D C, et al. The Heal-thcare Team's Perception of the Role of the Perioperative Nurse: A Qualitative Study. Journal of Perioperative Practice, 2016, 26(9): 189-195.
[5] HAMPTON B S, CRAIG L B, ABBOTT J F, et al. To the Point: Teaching the Obstetrics and Gynecology Medical Student in the Ope-rating Room. American Journal of Obstetrics and Gynecology, 2015, 213(4): 464-468.
[6] MORSE C R, MATHISEN D J. Educational Challenges of the Ope-rating Room. Thoracic Surgery Clinics, 2019, 29(3): 269-277.
[7] SAIDI T, DOUGLAS T S. Critical Elements in the Design, Deve-lopment and Use of Medical Devices. A Systemic Perspective of Orthopedic Devices Landscape in Low- and Middle-Income Countries. Health Policy and Technology, 2022, 11(1). DOI: 10.1016/j.hlpt.2021.100593.
[8] PORTO C S T, CATAL E. A Comparative Study of the Opinions, Experiences and Individual Innovativeness Characteristics of Ope-rating Room Nurses on Robotic Surgery. Journal of Advanced Nur-sing, 2021, 77(12): 4755-4767.
[9] 王飞跃. 平行系统方法与复杂系统的管理和控制.控制与决策, 2004, 19(5): 485-489, 514.
(WANG F Y. Parallel System Methods for Management and Control of Complex Systems. Control and Decision, 2004, 19(5): 485-489, 514.)
[10] WANG F Y. Parallel Intelligence in Metaverses: Welcome to Hanoi! IEEE Intelligent Systems, 2022, 37(1): 16-20.
[11] WANG F Y, QIN R, WANG X, et al. MetaSocieties in MetaVerse: MetaEconomics and MetaManagement for MetaEnterprises and MetaCities. IEEE Transactions on Computational Social Systems, 2022, 9(1) : 2-7.
[12] WANG F Y. New Control Paradigm for Industry 5.0: From Big Models to Foundation Control and Management. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1643-1646.
[13] WANG X X, YANG J, WANG Y T, et al. Steps toward Industry 5.0: Building “6S” Parallel Industries with Cyber-Physical-Social Intelligence. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1692-1703.
[14] WANG F Y, ZHANG J J. Transportation 5.0 in CPSS: Towards ACP-Based Society-Centered Intelligent Transportation // Proc of the IEEE 20th International Conference on Intelligent Transportation Systems. Washington, USA: IEEE, 2018: 762-767.
[15] 王飞跃.平行管理:复杂性管理智能的生态科技与智慧管理之DAO.自动化学报, 2022, 48(11): 2655-2669.
(WANG F Y. Parallel Management: The DAO to Smart Ecological Technology for Complexity Management Intelligence. Acta Automatica Sinica, 2022, 48(11): 2655-2669.)
[16] 鲁越,郭超,潘晴,等.平行博物馆系统:框架、平台、方法及应用.模式识别与人工智能, 2023, 36(7): 575-589.
(LU Y, GUO C, PAN Q, et al. Parallel Museum Systems: Frame-work, Platform, Methods and Applications. Pattern Recognition and Artificial Intelligence, 2023, 36(7): 575-589.)
[17] WANG Y T, WANG X, WANG X X, et al. The ChatGPT After: Building Knowledge Factories for Knowledge Workers with Know-ledge Automation. IEEE/CAA Journal of Automatica Sinica, 2023, 10(11): 2041-2044.
[18] WANG F Y, WONG P K. Intelligent Systems and Technology for Integrative and Predictive Medicine: An ACP Approach. ACM Transactions on Intelligent Systems and Technology, 2013, 4. DOI: 10.1145/2438653.2438667.
[19] WANG F Y. Parallel Healthcare: Robotic Medical and Health Pro-cess Automation for Secured and Smart Social Healthcares. IEEE Transactions on Computational Social Systems, 2020, 7(3): 581-586.
[20] 王飞跃. 平行医生与平行医院:ChatGPT与通用人工智能技术对未来医疗的冲击与展望.协和医学杂志, 2023, 14(4): 673-679.
(WANG F Y. Parallel Doctors and Parallel Hospitals: Impact and Perspective of ChatGPT-Like AIGC and AGI on Medicine and Me-dicare. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 673-679.)
[21] 王飞跃. 数字医生与平行医疗:从医疗知识自动化到系统化智能医学.协和医学杂志, 2021, 12(6): 829-833.
(WANG F Y. Digital Doctors and Parallel Healthcare: From Medical Knowledge Automation to Intelligent Metasystems Medicine. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 829-833.)
[22] 王拥军,王飞跃,王戈,等. 平行医院:从医院信息管理系统到智慧医院操作系统.自动化学报, 2021, 47(11): 2585-2599.
(WANG Y J, WANG F Y, WANG G, et al. Parallel Hospitals: From Hospital Information System(HIS) to Hospital Smart Opera-ting System(HSOS). Acta Automatica Sinica, 2021, 47(11): 2585-2599.)
[23] 王飞跃.平行医学:从医学的温度到智慧的医学.智能科学与技术学报, 2021, 3(1): 1-9.
(WANG F Y. Parallel Medicine: From Warmness of Medicare to Medicine of Smartness. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 1-9.)
[24] WANG S, WANG J, WANG X, et al. Blockchain-Powered Para-llel Healthcare Systems Based on the ACP Approach. IEEE Transactions on Computational Social Systems, 2018, 5(4): 942-950.
[25] 赵毅飞,申乐,叶佩军,等. 平行麻醉:从麻醉自动化走向智慧型全周期麻醉平台.智能科学与技术学报, 2023, 5(2): 234-246.
(ZHAO Y F, SHEN L, YE P J, et al. Parallel Anesthesia: From Anesthesia Automation to Intelligent Full-Cycle Anesthesia Platform. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 234-246.)
[26] 王飞跃,张梅,孟祥冰,等. 平行手术:基于ACP的智能手术计算方法.模式识别与人工智能, 2017, 30(11): 961-970.
(WANG F Y, ZHANG M, MENG X B, et al. Parallel Surgery: An ACP-Based Approach for Intelligent Operations. Pattern Recognition and Artificial Intelligence, 2017, 30(11): 961-970.)
[27] 王飞跃,金征宇,苟超,等.基于ACP方法的平行医学图像智能分析及其应用.中华放射学杂志, 2021, 55(3): 309-315.
(WANG F Y, JIN Z Y, GOU C, et al. ACP-Based Parallel Medical Imaging for Intelligent Analytics and Applications. Chinese Journal of Radiology, 2021, 55(3): 309-315.)
[28] 王飞跃,苟超,王建功,等. 平行皮肤:基于视觉的皮肤病分析框架.模式识别与人工智能, 2019, 32(7): 577-588.
(WANG F Y, GOU C, WANG J G, et al. Parallel Skin: A Vision-Based Dermatological Analysis Framework. Pattern Recognition and Artificial Intelligence, 2019, 32(7): 577-588.)
[29] 王飞跃,张梅,孟祥冰,等. 平行眼:基于ACP 的智能眼科诊疗.模式识别与人工智能, 2018, 31(6): 495-504.
(WANG F Y, ZHANG M, MENG X B, et al. Parallel Eyes: An ACP-Based Smart Ophthalmic Diagnosis and Treatment. Pattern Recognition and Artificial Intelligence, 2018, 31(6): 495-504.)
[30] 张梅,陈鸰,王飞跃,等. 平行胃肠:基于ACP的智能胃肠疾病诊疗.模式识别与人工智能, 2019, 32(12): 1061-1071.
(ZHANG M, CHEN L, WANG F Y, et al. Parallel Gastrointestine: An ACP-Based Approach for Intelligent Operations. Pattern Recognition and Artificial Intelligence, 2019, 32(12): 1061-1071.)
[31] 王飞跃,李长贵,国元元,等. 平行高特:基于ACP的平行痛风诊疗系统框架.模式识别与人工智能, 2017, 30(12): 1057-1068.
(WANG F Y, LI C G, GUO Y Y, et al. Parallel Gout: An ACP-Based System Framework for Gout Diagnosis and Treatment. Pa-ttern Recognition and Artificial Intelligence, 2017, 30(12): 1057-1068.)
[32] YU Y, YAO S Y, WANG K X, et al. Pursuing Equilibrium of Medical Resources via Data Empowerment in Parallel Healthcare System[C/OL].[2023-2-22]. https://arxiv.org/pdf/2306.00408v1.pdf.
[33] CHEN Y, SHIN K G, XIONG H G. Generalizing Fixed-Priority Scheduling for Better Schedulability in Mixed-Criticality Systems. Information Processing Letters, 2016, 116(8): 508-512.
[34] PANDIT J J, CAREY A. Estimating the Duration of Common Elective Operations: Implications for Operating List Management. Anaesthesia, 2006, 61(8): 768-776.
[35] ZHAO B Q, WATERMAN R S, URMAN R D, et al. A Machine Learning Approach to Predicting Case Duration for Robot-Assisted Surgery. Journal of Medical Systems, 2019, 43(2). DOI: 10.1007/s10916-018-1151-y.
[36] HUNG A J, CHEN J, CHE Z P, et al. Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes. Journal of Endourology, 2018, 32(5): 438-444.
[37] KONG S H, HAOUCHINE N, SOARES R, et al. Robust Augmented Reality Registration Method for Localization of Solid Organs' Tumors Using CT-Derived Virtual Biomechanical Model and Fluorescent Fiducials. Surgical Endoscopy, 2017, 31(7): 2863-2871.
[38] LEE S C, FUERST B, TATENO K, et al. Multi-modal Imaging, Model-Based Tracking, and Mixed Reality Visualisation for Orthopaedic Surgery. Healthcare Technology Letters, 2017, 4(5): 168-173.
[39] WANG D Y, KHOSLA A, GARGEYA R, et al. Deep Learning for Identifying Metastatic Breast Cancer[C/OL], [2023-2-21].https://arxiv.org/pdf/1606.05718.pdf.
[40] BERGQUIST S L, BROOKS G A, KEATING N L, et al. Classi-fying Lung Cancer Severity with Ensemble Machine Learning in Health Care Claims Data. Proceedings of Machine Learning for Healthcare, 2017, 68: 25-38.
[41] HASHIMOTO D A, ROSMAN G, RUS D, et al. Artificial Intelligence in Surgery: Promises and Perils. Annals of Surgery, 2018, 268(1): 70-76.
[42] MCCOY A, DAS R. Reducing Patient Mortality, Length of Stay and Readmissions through Machine Learning-Based Sepsis Prediction in the Emergency Department, Intensive Care Unit and Hospital Floor Units. BMJ Open Quality, 2017, 6(2). DOI: 10.1136/bmjoq-2017-000158.
[43] SHIMABUKURO D W, BARTON C W, FELDMAN M D, et al. Effect of a Machine Learning-Based Severe Sepsis Prediction Algorithm on Patient Survival and Hospital Length of Stay: A Rando-mised Clinical Trial. BMJ Open Respiratory Research, 2017, 4(1). DOI: 10.1136/bmjresp-2017-000234.
[44] FLEUREN L M, KLAUSCH T L T, ZWAGER C L, et al. Machine Learning for the Prediction of Sepsis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. Intensive Care Medicine, 2020, 46(3): 383-400.
[45] CHERIFA M, BLET A, CHAMBAZ A, et al. Prediction of an Acute Hypotensive Episode During an ICU Hospitalization with a Super Learner Machine-Learning Algorithm. Anesthesia and Ana-lgesia, 2020, 130(5): 1157-1166.
[46] LÖTSCH J, SIPILÄ R, TASMUTH T, et al. Machine-Learning-Derived Classifier Predicts Absence of Persistent Pain after Breast Cancer Surgery with High Accuracy. Breast Cancer Research and Treatment, 2018, 171(2): 399-411.
[47] WOOD B C, KONCHAN S, GAY S, et al. Data Analysis of Plastic Surgery Instrument Trays Yields Significant Cost Savings and Effi-ciency Gains. Annals of Plastic Surgery, 2021, 86(6S): S635-S639.
[48] SHAH P, KENDALL F, KHOZIN S, et al. Artificial Intelligence and Machine Learning in Clinical Development: A Translational Perspective. NPJ Digital Medicine, 2019, 2. DOI: 10.1038/s41746-019-0148-3. |