[1] FREEMAN W T, PASZTOR E C. Learning Low-Level Vision // Proc of the 7th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 1999. DOI: 10.1109/ICCV.1999.790414.
[2] GLASNER D, BAGON S, IRANI M. Super-Resolution from a Single Image // Proc of the 12th IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2009: 349-356.
[3] RHEE S, KANG M G. Discrete Cosine Transform Based Regula-rized High-Resolution Image Reconstruction Algorithm. Optical Engineering, 1999, 38(8): 1348-1356.
[4] ZOU W W W, YUEN P C. Very Low Resolution Face Recognition Problem. IEEE Transactions on Image Processing, 2012, 21(1): 327-340.
[5] ZHANG L, WU X L. An Edge-Guided Image Interpolation Algorithm via Directional Filtering and Data Fusion. IEEE Transactions on Image Processing, 2006, 15(8): 2226-2238.
[6] YANG J C, WANG Z W, LIN Z, et al. Coupled Dictionary Trai-ning for Image Super-Resolution. IEEE Transactions on Image Processing, 2012, 21(8): 3467-3478.
[7] 张大宝,赵建伟,周正华.基于l1诱导轻量级深度网络的图像超分辨率重建.模式识别与人工智能, 2022, 35(12): 1101-1110.
(ZHANG D B, ZHAO J W, ZHOU Z H. Image Super-Resolution Reconstruction Based on l1 Induced Lightweight Deep Networks. Pattern Recognition and Artificial Intelligence, 2022, 35(12): 1101-1110.)
[8] 张焯林,赵建伟,曹飞龙.构建带空洞卷积的深度神经网络重建高分辨率图像.模式识别与人工智能, 2019, 32(3): 259-267.
(ZHANG Z L, ZHAO J W, CAO F L. Building Deep Neural Networks with Dilated Convolutions to Reconstruct High-Resolution Image. Pattern Recognition and Artificial Intelligence, 2019, 32(3): 259-267.)
[9] DONG C, LOY C C, HE K M, et al. Learning a Deep Convolutio-nal Network for Image Super-Resolution // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 184-199.
[10] LIM B, SON S, KIM H, et al. Enhanced Deep Residual Networks for Single Image Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, USA: IEEE, 2017: 1132-1140.
[11] ZHANG Y L, LI K P, LI K,et al. Image Super-Resolution Using Very Deep Residual Channel Attention Networks // Proc of the European Conference on Computer Vision. Berlin, Germany: Sprin-ger, 2018: 294-310.
[12] KIM J, LEE J K, LEE K M. Deeply-Recursive Convolutional Network for Image Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2016: 1637-1645.
[13] HUI Z, WANG X M, GAO X B. Fast and Accurate Single Image Super-Resolution via Information Distillation Network // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 723-731.
[14] HUI Z, GAO X B, YANG Y C, et al. Lightweight Image Super-Resolution with Information Multi-distillation Network // Proc of the 27th ACM International Conference on Multimedia. New York, USA: ACM, 2019: 2024-2032.
[15] KONG F Y, LI M X, LIU S W, et al. Residual Local Feature Network for Efficient Super-Resolution // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 765-775.
[16] ZHAO H Y, KONG X T, HE J W, et al. Efficient Image Super-Resolution Using Pixel Attention // Proc of the European Confe-rence on Computer Vision. Berlin, Germany: Springer, 2020: 56-72.
[17] CHEN H Y, GU J J, ZHANG Z. Attention in Attention Network for Image Super-Resolution[C/OL]. [2023-10-09]. https://arxiv.org/abs/2104.09497.
[18] ZHANG M J, WU Q Q, GUO J, et al. Heat Transfer-Inspired Network for Image Super-Resolution Reconstruction. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 1810-1820.
[19] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-Complexity Single-Image Super-Resolution Based on Nonnegative Neigh-bor Embedding[C/OL]. [2023-10-09]. http://people.rennes.inria.fr/Aline.Roumy/publi/12bmvc_abstract_Bevilacqua_lowComplexitySR.pdf.
[20] ZEYDE R, ELAD M, PROTTER M. On Single Image Scale-Up Using Sparse-Representations // Proc of the 7th International Conference on Curves and Surfaces. Berlin, Germany: Springer, 2012: 711-730.
[21] TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 Challenge on Single Image Super-Resolution: Methods and Results // Proc of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, USA: IEEE, 2017: 1110-1121.
[22] MARTIN D, FOWLKES C, TAL D, et al. A Database of Human Segmented Natural Images and Its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics // Proc of the 8th IEEE International Conference on Computer Vision. Wa-shington, USA: IEEE, 2001: 416-423.
[23] HUANG J B, SINGH A, AHUJA N. Single Image Super-Resolution from Transformed Self-Exemplars // Proc of the IEEE Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2015: 5197-5206.
[24] WANG Z, BOVIK A C, SHEIKH H R, et al. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[25] TONG T, LI G, LIU X J, et al. Image Super-Resolution Using Dense Skip Connections // Proc of the IEEE International Confe-rence on Computer Vision. Washington, USA: IEEE, 2017: 4809-4817.
[26] ZHU F Y, ZHAO Q J. Efficient Single Image Super-Resolution via Hybrid Residual Feature Learning with Compact Back-Projection Network // Proc of the IEEE/CVF International Conference on Computer Vision Workshops. Washington, USA: IEEE, 2019: 2453-2460.
[27] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 5835-5843.
[28] AHN N, KANG B, SOHN K A. Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 256-272.
[29] WANG L G, DONG X Y, WANG Y Q, et al. Exploring Sparsity in Image Super-Resolution for Efficient Inference // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 4915-4924.
[30] YANG W M, WANG W, ZHANG X C, et al. Lightweight Feature Fusion Network for Single Image Super-Resolution. IEEE Signal Processing Letters, 2019, 26(4): 538-542.
[31] LI J C, FANG F M, MEI K F, et al. Multi-scale Residual Network for Image Super-Resolution // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 527-542.
[32] YANG X, LI H K, LI X C. Lightweight Image Super-Resolution with Feature Cheap Convolution and Attention Mechanism. Cluster Computing, 2022, 25(6): 3977-3992.
[33] PENG C M, SHU P, HUANG X Y, et al. LCRCA: Image Super-Resolution Using Lightweight Concatenated Residual Channel Attention Networks. Applied Intelligence, 2022, 52: 10045-10059.
[34] PARK K, SOH J W, CHO N I. A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution. IEEE Transactions on Multimedia, 2023, 25: 907-918.
[35] 周登文,王婉君,马钰,等.基于区域互补注意力和多维注意力的轻量级图像超分辨率网络.模式识别与人工智能, 2022, 35(7): 625-636.
(ZHOU D W, WANG W J, MA Y, et al. Lightweight Image Super-Resolution Network Based on Regional Complementary Attention and Multi-dimensional Attemtion. Pattern Recognition and Artificial Intelligence, 2022, 35(7): 625-636.)
[36] LI X Y, SHAO Z H, LI B C, et al. Residual Shuffle Attention Network for Image Super-Resolution. Machine Vision and Applications, 2023, 34(5). DOI: 10.1007/s00138-023-01436-9.
[37] ZHU K Y. GUO S H. REN B, et al. Lightweight Image Super-Resolution with Expectation-Maximization Attention Mechanism. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1273-1284.
[38] 赵小强,李希尧,宋昭漾.轻量化逆可分离残差信息蒸馏网络的图像超分辨率重建.模式识别与人工智能, 2023, 36(5): 419-432.
(ZHANG X Q, LI X Y, SONG Z Y. Lightweight Inverse Separable Residual Information Distillation Network for Image Super-Reso-lution Reconstruction. Pattern Recognition and Artificial Intelligence, 2023, 36(5): 419-432.) |