[1] 王鸿伟,过敏意. 刻画长短期用户兴趣的基于会话的推荐系统. 中国科学(信息科学), 2020, 50(12): 1867-1881.
(WANG H W, GUO M Y. Recurrent Memory Networks: Modeling Long Short-Term User Preferences for Session-Based Recommendation. SCIENTIA SINICA Informationis, 2020, 50(12): 1867-1881.)
[2] SALAKHUTDINOV R R, MNIH A. Probabilistic Matrix Factorization // Proc of the 20th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2007: 1257-1264.
[3] DAI Q Y, WU X M, FAN L, et al. Personalized Knowledge-Aware Recommendation with Collaborative and Attentive Graph Convolutional Networks. Pattern Recognition, 2022, 128. DOI: 10.1016/j.patcog.2022.108628.
[4] 陈晋鹏,李海洋,张帆,等. 基于会话的推荐方法综述. 中文信息学报, 2023, 37(3): 1-17, 26.
(CHEN J P, LI H Y, ZHANG F, et al. Review on Session-Based Recommendation Method. Journal of Chinese Information Proce-ssing, 2023, 37(3): 1-17, 26.)
[5] WANG S J, CAO L B, WANG Y, et al. A Survey on Session-Based Recommender Systems. ACM Computing Surveys, 2021, 54(7). DOI: 10.1145/3465401.
[6] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing Personalized Markov Chains for Next-Basket Recommendation // Proc of the 19th International Conference on World Wide Web. New York, USA: ACM, 2010: 811-820.
[7] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-Based Colla-borative Filtering Recommendation Algorithms // Proc of the 10th International Conference on World Wide Web. New York, USA: ACM, 2001: 285-295.
[8] GARG D, GUPTA P, MALHOTRA P, et al. Sequence and Time Aware Neighborhood for Session-Based Recommendations: STAN // Proc of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2019: 1069-1072.
[9] TUAN T X, PHUONG T M. 3D Convolutional Networks for Session-Based Recommendation with Content Features // Proc of the 11th ACM Conference on Recommender Systems. New York, USA: ACM, 2017: 138-146.
[10] YUAN F J, KARATZOGLOU A, ARAPAKIS I, et al. A Simple Convolutional Generative Network for Next Item Recommendation // Proc of the 20th ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2019: 582-590.
[11] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-Based Recommendations with Recurrent Neural Networks[C/OL].[2024-02-19].https://arxiv.org/pdf/1511.06939.
[12] HIDASI B, KARATZOGLOU A. Recurrent Neural Networks with Top-K Gains for Session-Based Recommendations // Proc of the 27th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2018: 843-852.
[13] JANNACH D, LUDEWIG M. When Recurrent Neural Networks Meet the Neighborhood for Session-Based Recommendation // Proc of the 11th ACM Conference on Recommender Systems. New York, USA: ACM, 2017: 306-310.
[14] LI J, REN P J, CHEN Z M, et al. Neural Attentive Session-Based Recommendation // Proc of the ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2017: 1419-1428.
[15] LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: Short-Term Attention/Memory Priority Model for Session-Based Recommendation // Proc of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2018: 1831-1839.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need // Proc of the 31st International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2017: 6000-6010.
[17] KANG W C, MCAULEY J. Self-Attentive Sequential Recommendation // Proc of the IEEE International Conference on Data Mi-ning. Washington, USA: IEEE, 2018: 197-206.
[18] WU S, TANG Y Y, ZHU Y Q, et al. Session-Based Recommendation with Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 346-353.
[19] WANG Z Y, WEI W, CONG G, et al. Global Context Enhanced Graph Neural Networks for Session-Based Recommendation // Proc of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2020: 169-178.
[20] XU C F, ZHAO P P, LIU Y C, et al. Graph Contextualized Self-Attention Network for Session-Based Recommendation // Proc of the 28th International Joint Conference on Artificial Intelligence Main Track. San Francisco, USA: IJCAI, 2019: 3940-3946.
[21] PAN Z Q, CAI F, CHEN W Y, et al. Collaborative Graph Lear-ning for Session-Based Recommendation. ACM Transactions on Information Systems, 2022, 40(4). DOI: 10.1145/3490479.
[22] PAN Z Q, CAI F, CHEN W Y, et al. Star Graph Neural Networks for Session-Based Recommendation // Proc of the 29th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2020: 1195-1204.
[23] QIU R H, LI J J, HUANG Z, et al. Rethinking the Item Order in Session-Based Recommendation with Graph Neural Networks // Proc of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2019: 579-588.
[24] XIA X, YIN H Z, YU J L, et al. Self-Supervised Hypergraph Convolutional Networks for Session-Based Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4503-4511.
[25] ZHANG X K, XU B, YANG L, et al. Price DOES Matter! Mode-ling Price and Interest Preferences in Session-Based Recommendation // Proc of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2022: 1684-1693.
[26] YE R, ZHANG Q, LUO H L. Cross-Session Aware Temporal Convolutional Network for Session-Based Recommendation // Proc of the International Conference on Data Mining Workshops. Washington, USA: IEEE, 2020: 220-226.
[27] WANG M R, REN P J, MEI L, et al. A Collaborative Session-Based Recommendation Approach with Parallel Memory Modules // Proc of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2019: 345-354.
[28] HAN Q L, ZHANG C, CHEN R, et al. Multi-faceted Global Item Relation Learning for Session-Based Recommendation // Proc of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2022: 1705-1715.
[29] WANG X, LIU N, HAN H, et al. Self-Supervised Heterogeneous Graph Neural Network with Co-contrastive Learning // Proc of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2021: 1726-1736.
[30] HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning Deep Representations by Mutual Information Estimation and Maximization[C/OL].[2024-02-19]. https://arxiv.org/pdf/1808.06670.
[31] KONG L, D'AUTUME C M, LING W, et al. A Mutual Information Maximization Perspective of Language Representation Learning[C/OL]. [2024-02-19]. https://arxiv.org/pdf/1910.08350.
[32] WU J C, WANG X, FENG F L, et al. Self-Supervised Graph Learning for Recommendation // Proc of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2021: 726-735.
[33] LIN Z H, TIAN C X, HOU Y P, et al. Improving Graph Collaborative Filtering with Neighborhood-Enriched Contrastive Learning // Proc of the ACM Web Conference. New York, USA: ACM, 2022: 2320-2329.
[34] XIE X, SUN F, LIU Z Y, et al. Contrastive Learning for Sequential Recommendation // Proc of the IEEE 38th International Conference on Data Engineering. Washington, USA: IEEE, 2022: 1259-1273.
[35] XIA X, YIN H Z, YU J L, et al. Self-Supervised Graph Co-trai-ning for Session-Based Recommendation // Proc of the 30th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2021: 2180-2190.
[36] 张莉,汪海涛,贺建峰,等. 解耦全局与局部偏好的会话推荐算法[J/OL]. [2024-02-19]. https://link.cnki.net/urlid/21.1106.TP.20240407.1445.008.
(ZHANG L, WANG H T, HE J F, et al. Disentangling Global and Local Preference for Session-Based Recommendation[J/OL]. [2024-02-19]. https://link.cnki.net/urlid/21.1106.TP.20240407.1445.008.)
[37] 王永贵,袁浩钰. 融合自监督的协同注意图学习会话推荐[J/OL]. [2024-02-19]. https://kns.cnki.net/kcms2/detail/21.1106.TP.20230605.1627.012.html.
(WANG Y G, YUAN H Y. Fusing Self-Supervised Co-attentive Graph Learning for Session Recommendation[J/OL]. [2024-02-19]. https://kns.cnki.net/kcms2/detail/21.1106.TP.20230605.1627.012.html.)
[38] HE K M, FAN H Q, WU Y X, et al. Momentum Contrast for Unsupervised Visual Representation Learning // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2020: 9726-9735.
[39] PEINTNER A, MOHAMMADI A R, ZANGERLE E. SPARE: Shor-test Path Global Item Relations for Efficient Session-Based Reco-mmendation // Proc of the 17th ACM Conference on Recommender Systems. New York, USA: ACM, 2023: 58-69.
[40] LEWIS R. A Comparison of Dijkstra's Algorithm Using Fibonacci Heaps, Binary Heaps, and Self-Balancing Binary Trees[C/OL]. [2024-02-19].https://arxiv.org/pdf/2303.10034v2.
[41] AHN D, KIM S, HONG H, et al. STAR-Transformer: A Spatio-Temporal Cross Attention Transformer for Human Action Recognition // Proc of the IEEE/CVF Winter Conference on Applications of Computer Vision. Washington, USA: IEEE, 2023: 3319-3328.
[42] CHARIKAR M S. Similarity Estimation Techniques from Rounding Algorithms // Proc of the 34th Annual ACM Symposium on Theory of Computing. New York, USA: ACM, 2002: 380-388.
[43] CHEN Q W, LÜ S S, LI C, et al. End-to-End User Behavior Retrieval in Click-Through Rate Prediction Model[C/OL].[2024-02-19]. https://arxiv.org/pdf/2108.04468.
[44] GUPTA P, GARG D, MALHOTRA P, et al. NISER: Normalized Item and Session Representations with Graph Neural Networks[C/OL].[2024-02-19]. https://arxiv.org/pdf/1909.04276.
[45] VAN DER OORD A, LI Y Z, VINYALS O. Representation Lear-ning with Contrastive Predictive Coding[C/OL].[2024-02-19]. https://arxiv.org/pdf/1807.03748.
[46] HUANG C, CHEN J H, XIA L H, et al. Graph-Enhanced Multi-task Learning of Multi-level Transition Dynamics for Session-Based Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4123-4130.
[47] OUYANG K, XU X H, CHEN M X, et al. Mining Interest Trends and Adaptively Assigning Sample Weight for Session-Based Reco-mmendation // Proc of the 46th International ACM SIGIR Confe-rence on Research and Development in Information Retrieval. New York, USA: ACM, 2023: 2174-2178.
[48] BRILL E, MOORE R C. An Improved Error Model for Noisy Channel Spelling Correction // Proc of the 38th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: ACL, 2000: 286-293. |