Correspondence Calculation for Non-isometric 3D Shape Collection via Coupled Maps
YANG Jun1,2, XUE Youzhong1
1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070; 2. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070
Abstract To address the issues of low accuracy and poor generalization ability in existing non-isometric 3D shape collection correspondence calculation methods, a correspondence calculation method for non-isometric 3D shape collection via coupled maps is proposed. First, DiffusionNet is employed to directly extract initial features from the 3D shape, and thus discriminative feature descriptors are obtained. Then, functional maps matrix and point-to-point maps matrix are computed using these descriptors. Structural regularization constraints and softmax normalization are applied to both matrices, respectively, to obtain an optimal coupled maps matrix. Finally, a shape collection matching module based on a virtual template takes the initial model features as input and employs a point classifier constructed with the coupled maps to directly predict the correspondence between the shapes and the virtual templates. The final correspondence for the non-isometric shape collection is obtained through Gumbel-Sinkhorn normalization. Experimental results demonstrate that the proposed method effectively handles topological noise within non-isometric shapes, achieves low geodesic error in correspondence calculation, provides accurate results, and exhibits strong generalization ability.
Fund:National Natural Science Foundation of China(No.42261067), 2025 Key Talent Project of Gansu Province(No.2025RCXM031)
Corresponding Authors:
YANG Jun, Ph.D., professor. His research interests include computer graphics, remote sensing image analysis and processing, and deep learning.
About author:: XUE Youzhong, Master student. His research interests include 3D shape correspondence and deep learning.
YANG Jun,XUE Youzhong. Correspondence Calculation for Non-isometric 3D Shape Collection via Coupled Maps[J]. Pattern Recognition and Artificial Intelligence, 2025, 38(2): 116-131.
[1] DANG J S, YANG J. LHPHGCNN: Lightweight Hierarchical Para-llel Heterogeneous Group Convolutional Neural Networks for Point Cloud Scene Prediction. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18903-18915. [2] AIGERMAN N, PORANNE R, LIPMAN Y. Seamless Surface Ma-ppings. ACM Transactions on Graphics, 2015, 34(4). DOI: 10.1145/2766921. [3] 吴衍,杨军. 内外特征一致性对齐的非等距三维模型对应关系计算.计算机辅助设计与图形学学报, 2023, 35(5): 749-759. (WU Y, YANG J. Correspondence Calculation of Non-isometric 3D Shapes by Intrinsic-Extrinsic Feature Alignment. Journal of Compu-ter-Aided Design & Computer Graphics, 2023, 35(5): 749-759.) [4] JOHNSON-ROBERSON M, BRYSON M, FRIEDMAN A, et al. High-Resolution Underwater Robotic Vision-Based Mapping and Three-Dimensional Reconstruction for Archaeology. Journal of Field Robo-tics, 2017, 34(4): 625-643. [5] EZUZ D, HEEREN B, AZENCOT O, et al. Elastic Correspondence between Triangle Meshes. Computer Graphics Forum, 2019, 38(2): 121-134. [6] KIM V G, LI W, MITRA N J, et al. Exploring Collections of 3D Models Using Fuzzy Correspondences. ACM Transactions on Gra-phics, 2012, 31(4). DOI: 10.1145/2185520.2185550. [7] OVSJANIKOV M, BEN-CHEN M, SOLOMON J, et al. Functional Maps: A Flexible Representation of Maps between Shapes. ACM Transactions on Graphics, 2012, 31(4). DOI: 10.1145/2185520.2185526. [8] REN J, POULENARD A, WONKA P, et al. Continuous and Orientation-Preserving Correspondences via Functional Maps. ACM Transactions on Graphics, 2018, 37(6). DOI: 10.1145/3272127.3275040. [9] PANINE M, KIRGO M, OVSJANIKOV M. Non-Isometric Shape Ma-tching via Functional Maps on Landmark-Adapted Bases. Computer Graphics Forum, 2022, 41(6): 394-417. [10] KIM V G, LIPMAN Y, FUNKHOUSER T. Blended Intrinsic Maps. ACM Transactions on Graphics, 2011, 30(4). DOI: 10.1145/2010324.196497. [11] HUANG Q X, WANG F, GUIBAS L. Functional Map Networks for Analyzing and Exploring Large Shape Collections. ACM Transactions on Graphics, 2014, 33(4). DOI: 10.1145/2601097.2601111. [12] 杨军,雷鸣. 结合函数映射与循环一致性约束的模型簇对应关系计算.激光与光电子学进展, 2019, 56(8): 123-133. (YANG J, LEI M. Correspondence Calculation of Model Cluster by Functional Mapping Combined with Cycle-Consistency Constraints. Laser & Optoelectronics Progress, 2019, 56(8): 123-133.) [13] HUANG R Q, REN J, WONKA P, et al. Consistent ZoomOut: Efficient Spectral Map Synchronization. Computer Graphics Forum, 2020, 39(5): 265-278. [14] MELZI S, REN J, RODOLÀ E, et al. ZoomOut: Spectral Upsampling for Efficient Shape Correspondence. ACM Transactions on Graphics, 2019, 38(6). DOI: 10.1145/3355089.3356524. [15] GAO M L, LÄHNER Z, THUNBERG J, et al. Isometric Multi-Shape Matching // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2021: 14178-14188. [16] LITANY O, REMEZ T, RODOLÀ E, et al. Deep Functional Maps: Structured Prediction for Dense Shape Correspondence // Proc of the IEEE International Conference on Computer Vision. Washington, USA: IEEE, 2017: 5660-5668. [17] DONATI N, CORMAN E, OVSJANIKOV M. Deep Orientation-Aware Functional Maps: Tackling Symmetry Issues in Shape Mat-ching // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2022: 732-741. [18] LI L, DONATI N, OVSJANIKOV M. Learning Multi-resolution Func-tional Maps with Spectral Attention for Robust Shape Matching // Proc of the 36th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2022: 29336-29349. [19] 杨军,李金泰,高志明. 无监督的三维模型簇对应关系协同计算.浙江大学学报(工学版), 2022, 56(10): 1935-1947. (YANG J, LI J T, GAO Z M. Unsupervised Co-calculation on Correspondence of Three-Dimensional Shape Collections. Journal of Zhejiang University (Engineering Science), 2022, 56(10): 1935-1947.) [20] GROUEIX T, FISHER M, KIM V G, et al. 3D-CODED: 3D Correspondences by Deep Deformation // Proc of the European Confe-rence on Computer Vision. Berlin, Germany: Springer, 2018: 235-251. [21] CAO D L, BERNARD F. Unsupervised Deep Multi-shape Matching // Proc of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 55-71. [22] SUN M Z, MAO S W, JIANG P H, et al. Spatially and Spectrally Consistent Deep Functional Maps // Proc of the IEEE/CVF Inter-national Conference on Computer Vision. Washington, USA: IEEE, 2023: 14451-14461. [23] GROUEIX T, FISHER M, KIM V G, et al. Unsupervised Cycle-Consistent Deformation for Shape Matching. Computer Graphics Forum, 2019, 38(5): 123-133. [24] EYNARD D, RODOLÀ E, GLASHOFF K, et al. Coupled Functional Maps // Proc of the 4th International Conference on 3D Vision. Washington, USA: IEEE, 2016: 399-407. [25] RUSTAMOV R M, OVSJANIKOV M, AZENCOT O, et al. Map-Based Exploration of Intrinsic Shape Differences and Variability. ACM Transactions on Graphics, 2013, 32(4). DOI: 10.1145/2461912.2461959. [26] SHARP N, ATTAIKI S, CRANE K,et al. DiffusionNet: Discretization Agnostic Learning on Surfaces. ACM Transactions on Gra-phics, 2022, 41(3). DOI: 10.1145/3507905. [27] MENA G E, BELANGER D, LINDERMAN S, et al. Learning La-tent Permutations with Gumbel-Sinkhorn Networks[C/OL].[2024-10-22]. https://arxiv.org/pdf/1802.08665. [28] REN J, MELZI S, WONKA P, et al. Discrete Optimization for Shape Matching. Computer Graphics Forum, 2021, 40(5): 81-96. [29] ZUFFI S, KANAZAWA A, JACOBS D W, et al. 3D Menagerie: Modeling the 3D Shape and Pose of Animals // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2017: 5524-5532. [30] MAGNET R, REN J, SORKINE-HORNUNG O, et al. Smooth Non-rigid Shape Matching via Effective Dirichlet Energy Optimization // Proc of the International Conference on 3D Vision. Washington, USA: IEEE, 2022: 495-504. [31] LÄHNER Z, RODOLÀ E, BRONSTEIN M M, et al. SHREC'16: Matching of Deformable Shapes with Topological Noise // Proc of the Eurographics Workshop on 3D Object Retrieval. Berlin, Germany: Springer, 2016: 55-60. [32] MELZI S, MARIN R, RODOLÀ E, et al. SHREC 2019: Matching Humans with Different Connectivity // Proc of the Eurographics Workshop on 3D Object Retrieval. Berlin, Germany: Springer, 2019: 121-128. [33] BOGO F, ROMERO J, LOPER M, et al. FAUST: Dataset and Evaluation for 3D Mesh Registration // Proc of the IEEE Confe-rence on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2014: 3794-3801. [34] ANGUELOV D, SRINIVASAN P, KOLLER D, et al. SCAPE: Shape Completion and Animation of People. ACM Transactions on Graphics, 2005, 24(3): 408-416. [35] CAO D L, ROETZER P, BERNARD F. Unsupervised Learning of Robust Spectral Shape Matching. ACM Transactions on Graphics, 2023, 42(4). DOI: 10.1145/3592107.