| [1] PILLALAMARRI R, SHANMUGAM U.A Review on EEG-Based Multi-modal Learning for Emotion Recognition. Artificial Intelli-gence Review, 2025, 58(5). DOI: 10.1007/s10462-025-11126-9.
[2] SAMAL P, HASHMI M F.Role of Machine Learning and Deep Learning Techniques in EEG-Based BCI-Emotion Recognition Sys-tem: A Review. Artificial Intelligence Review, 2024, 57(3). DOI: 10.1007/s10462-023-10690-2.
[3] ZOTEV V, MAYELI A, MISAKI M, et al. Emotion Self-Regulation Training in Major Depressive Disorder Using Simultaneous Real-Time fMRI and EEG Neurofeedback. NeuroImage: Clinical, 2020, 27. DOI: 10.1016/j.nicl.2020.102331.
[4] WU E Q, DENG P Y, QU X Y, et al. Detecting Fatigue Status of Pilots Based on Deep Learning Network Using EEG Signals. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(3): 575-585.
[5] LI J Y, YANG L, LÜ C, et al. GLF-STAF: A Global-Local-Facial Spatio-Temporal Attention Fusion Approach for Driver Emotion Re-cognition. IEEE Transactions on Consumer Electronics, 2025, 71(2): 3486-3497.
[6] ZHENG W L, ZHU J Y, LU B L, et al. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Transactions on Affective Computing, 2019, 10(3): 417-429.
[7] ALARCÃO S M, FONSECA M J. Emotions Recognition Using EEG Signals: A Survey. IEEE Transactions on Affective Computing, 2019, 10(3): 374-393.
[8] SI X P, HE H, YU J Y, et al. Cross-Subject Emotion Recognition Brain-Computer Interface Based on fNIRS and DBJNet. Cyborg and Bionic Systems, 2023, 4. DOI: 10.34133/cbsystems.0045.
[9] 刘少鹏,洪佳明,梁杰鹏,等.面向医学图像分割的半监督条件生成对抗网络.软件学报, 2020, 31(8): 2588-2602.
(LIU S P, HONG J M, LIANG J P, et al. Medical Image Segmentation Using Semi-supervised Conditional Generative Adversarial Nets. Journal of Software, 2020, 31(8): 2588-2602.)
[10] ZHOU R S, YE W S, ZHANG Z G, et al. EEGMatch: Learning with Incomplete Labels for Semi-supervised EEG-Based Cross-Subject Emotion Recognition. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(7): 12991-13005.
[11] ZHANG G Y, ETEMAD A.Holistic Semi-supervised Approaches for EEG Representation Learning // Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Washington, USA: IEEE, 2022: 1241-1245.
[12] BERTHELOT D, CARLINI N, GOODFELLOW I, et al. MixMa-tch: A Holistic Approach to Semi-supervised Learning // Proc of the 33rd International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2019: 5049-5059.
[13] ZHANG G Y, DAVOODNIA V, ETEMAD A.PARSE: Pairwise Alignment of Representations in Semi-supervised EEG Learning for Emotion Recognition. IEEE Transactions on Affective Computing, 2022, 13(4): 2185-2200.
[14] 李锦瑶,杜肖兵,朱志亮,等.脑电情绪识别的深度学习研究综述.软件学报, 2023, 34(1): 255-276.
(LI J Y, DU X B, ZHU Z L, et al. Deep Learning for EEG-Based Emotion Recognition: A Survey. Journal of Software, 2023, 34(1): 255-276.)
[15] YANG H, CHEN C L P, CHEN B N, et al. Improving the Interpretability Through Maximizing Mutual Information for EEG Emo-tion Recognition. IEEE Transactions on Affective Computing, 2025, 16(2): 744-757.
[16] ZHONG P X, WANG D, MIAO C Y.EEG-Based Emotion Recognition Using Regularized Graph Neural Networks. IEEE Transactions on Affective Computing, 2022, 13(3): 1290-1301.
[17] ZHANG T, WANG X H, XU X M, et al. GCB-Net: Graph Con-volutional Broad Network and Its Application in Emotion Recognition. IEEE Transactions on Affective Computing, 2022, 13(1): 379-388.
[18] SONG T F, LIU S Y, ZHENG W M, et al. Variational Instance-Adaptive Graph for EEG Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14(1): 343-356.
[19] LI Y, CHEN J, LI F, et al. GMSS: Graph-Based Multi-task Self-Supervised Learning for EEG Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14(3): 2512-2525.
[20] JIN M, DU C D, HE H G, et al. PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition. IEEE Transactions on Multimedia, 2024, 26: 9070-9082.
[21] YAN H C, GUO K L, XING X F, et al. Bridge Graph Attention Based Graph Convolution Network with Multi-scale Transformer for EEG Emotion Recognition. IEEE Transactions on Affective Computing, 2024, 15(4): 2042-2054.
[22] AN Y L, HU S H, LIU S Q, et al. LGDAAN-Nets: A Local and Global Domain Adversarial Attention Neural Networks for EEG Emo-tion Recognition. Knowledge-Based Systems, 2025, 318. DOI: 10.1016/j.knosys.2025.113613.
[23] PAN D, ZHENG H H, XU F F, et al. MSFR-GCN: A Multi-scale Feature Reconstruction Graph Convolutional Network for EEG Emotion and Cognition Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 3245-3254.
[24] GAO H X, WANG X Y, CHEN Z H, et al. Graph Convolutional Network with Connectivity Uncertainty for EEG-Based Emotion Recognition. IEEE Journal of Biomedical and Health Informatics, 2024, 28(10): 5917-5928.
[25] YE W S, ZHANG Z G, TENG F, et al. Semi-supervised Dual-Stream Self-Attentive Adversarial Graph Contrastive Learning for Cross-Subject EEG-Based Emotion Recognition. IEEE Transactions on Affective Computing, 2025, 16(1): 290-305.
[26] 班瑞阳,周大鹏,韩吉平,等.基于改进注意力机制的领域对抗网络的认知负荷识别模型.小型微型计算机系统, 2024, 45(11): 2602-2608.
(BAN R Y, ZHOU D P, HAN J P, et al. Cognitive Load Recognition Model Based on Improved Attention Mechanism in Domain-Adversarial Networks. Journal of Chinese Computer Systems, 2024, 45(11): 2602-2608.)
[27] 李平,宋琦,张锋.引入局部特征对齐和原型修正的少样本图像分类模型.小型微型计算机系统, 2025, 46(9): 2145-2152.
(LI P, SONG Q, ZHANG F.Few-Shot Image Classification Model by Introducing Local Feature Alignment and Prototype Rectification. Journal of Chinese Computer Systems, 2025, 46(9): 2145-2152.)
[28] 徐祺津,叶海良,曹飞龙,等.基于全局-局部先验和纹理细节关注的图像修复.模式识别与人工智能, 2025, 38(2): 101-115.
(XU Q J, YE H L, CAO F L, et al. Image Inpainting Based on Global-Local Prior and Details. Pattern Recognition and Artificial Intelligence, 2025, 38(2): 101-115.)
[29] 侯冰震,张桂梅,彭昆.基于不确定性引导和尺度一致性的肾肿瘤图像分割方法.模式识别与人工智能, 2023, 36(2): 95-107.
(HOU B Z, ZHANG G M, PENG K.Kidney Tumor Image Segmentation Method Based on Uncertainty Guidance and Scale Consistency. Pattern Recognition and Artificial Intelligence, 2023, 36(2):95-107.)
[30] ANDRIC M, HASSON U.Global Features of Functional Brain Networks Change with Contextual Disorder. NeuroImage, 2015, 117: 103-113.
[31] LIU X H, LU B L, ZHENG W L.EEGMirror: Leveraging EEG Data in the Wild via Montage-Agnostic Self-Supervision for EEG to Video Decoding // Proc of the IEEE/CVF International Conference on Computer Vision. Washington, USA: IEEE, 2025: 18273-18283.
[32] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering // Proc of the 30th International Conference on Neural In-formation Processing Systems. Cambridge, USA: MIT Press, 2016: 3844-3852.
[33] ZHOU R S, ZHANG Z G, FU H, et al. PR-PL: A Novel Proto-typical Representation Based Pairwise Learning Framework for Emo-tion Recognition Using EEG Signals. IEEE Transactions on Affec-tive Computing, 2024, 15(2): 657-670.
[34] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research, 2016, 17(59): 1-35.
[35] PINHEIRO P O.Unsupervised Domain Adaptation with Similarity Learning // Proc of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2018: 8004-8013.
[36] BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of Representations for Domain Adaptation[C/OL].[2025-09-25]. https://proceedings.neurips.cc/paper_files/paper/2006/file/b1b0432ceafb0ce714426e9114852ac7-Paper.pdf.
[37] ZHENG W L, LU B L.Investigating Critical Frequency Band Sand Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162-175.
[38] ZHENG W L, LIU W, LU Y F, et al. EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Transactions on Cybernetics, 2019, 49(3):1110-1122.
[39] SONG T F, ZHENG W M, SONG P, et al. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE Transactions on Affective Computing, 2020, 11(3): 532-541.
[40] CHEN Y Y, XU X D, QIN X W.Cross-Subject and Cross-Session EEG Emotion Recognition Based on Multi-source Structural Deep Clustering. IEEE Transactions on Cognitive and Developmental Systems, 2025, 17(5): 1245-1259.
[41] ZHANG B W, WANG Y D, HOU W H, et al. FlexMatch: Boosting Semi-supervised Learning with Curriculum Pseudo Labeling // Proc of the 35th International Conference on Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 18408-18419.
[42] YIN Z, ZHAO M Y, WANG Y X, et al. Recognition of Emotions Using Multimodal Physiological Signals and an Ensemble Deep Learning Model. Computer Methods and Programs in Biomedicine, 2017, 140: 93-110. |