模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2011, Vol. 24 Issue (2): 153-159    DOI:
Articles Current Issue| Next Issue| Archive| Adv Search |
Kernel Based Slow Feature Analysis

Download: PDF (482 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A kernelbased algorithm is proposed to solve the nonlinear exparsion problem of slow feature analysis (SFA) is proposed to solve this problem. By using the kernel trick, it avoids the difficulties of computing directly in high dimensional space. Because of the full use of nonlinear information of the data, its output is steady. Meanwhile, based on analysis of the objective of the algorithm, a formula is put forward to estimate the output slowness of the signal and utilize it as a guide line to choose parameters of the kernel functions. Experimental results show the effectiveness of the proposed algorithm.
Key wordsInvariance Learning      Slow Feature Analysis      Kernel Methods      Blind Source Separation     
ZTFLH: TP 181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
MA Kui-Jun
HAN Yan-Jun
TAO Qing
WANG Jue
Cite this article:   
MA Kui-Jun,HAN Yan-Jun,TAO Qing等. Kernel Based Slow Feature Analysis[J]. , 2011, 24(2): 153-159.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I2/153
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn