模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
Articles Current Issue| Next Issue| Archive| Adv Search |
Online Signature Verification System Based on Support Vector Data Description

Download: PDF (434 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  An novel online signature verification system is proposed based on support vector data description (SVDD). Firstly, correspondences of the critical points in signatures are confirmed by bidirectional backwardmerging dynamic time wrapping algorithm. Then, subtle differences in the local are calculated by classical dynamic time wrapping algorithm. Feature selection principle based on mean and deviation minimization is proposed. Finally, the classifiers are designed using support vector data description (SVDD). To obtain better result, m-fold-cross validation and genetic algorithm are used to seek optimal parameters of SVDD. The average equal error rate for skill forge signatures in SVC2004 signatures database is 4.25%.
Key wordsOnline Signature Verification      Dynamic Time Wrapping(DTW)      Support Vector Data Description(SVDD)      Feature Selection      Genetic Algorithm     
ZTFLH: TP 391.43  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZOU Jie
WU Zhong-Cheng
Cite this article:   
ZOU Jie,WU Zhong-Cheng. Online Signature Verification System Based on Support Vector Data Description[J]. , 2011, 24(2): 284-290.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I2/284
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn