模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (6): 842-856    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Self-Regulation of Neighborhood Parameter for Locally Linear Embedding
HUI Kang-Hua1,2,XIAO Bai-Hua1,WANG Chun-Heng1
1.Key Laboratory of Complex Systems and Intelligence Science,Institute of Automation,Chinese Academy of Sciences,Beijing 100190
2.College of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300

Download: PDF (334 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The locally linear embedding (LLE) algorithm is considered as a powerful method for the problem of nonlinear dimensionality reduction. A method called self-regulated LLE is proposed. It finds the locally linear patch by analyzing the locally linear reconstruction errors of each sample in the dataset. Then, according to samples on the locally linear patch, it selects the appropriate neighborhood parameter for LLE. The experimental results show that LLE with self-regulation performs better than LLE based on different evaluation criteria and spends less time on several datasets.
Key wordsDimensionality Reduction      Locally Linear Embedding (LLE)      Manifold Learning      Self-Regulation     
Received: 22 June 2009     
ZTFLH: TP391.41  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Cite this article:   
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I6/842
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn