模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (4): 491-500    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
SVM Incremental Learning Using Simulated Cutting Algorithm
SHEN Feng-Shan1,2,ZHANG Jun-Ying1 ,WANG Kai-Jun1
1.School of Computer Science and Engineering,Xidian University,Xian 710071
2.School of Information Engineering,Zhengzhou University,Zhengzhou 450052

Download: PDF (683 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A method named Simulated Cutting Algorithm (SCA) is introduced for SVM incremental learning. SCA computes the anticipated contribution for the mapped target of each training sample in feature space mapped by a kernel function, and then chooses samples with higher anticipated contribution for SVM incremental learning. It effectively solves the problems in traditional incremental learning, such as higher training cost, lower accuracy for selecting target samples and lacking robustness. The anticipated contribution rate of a sample is indicated by the recognition rate towards two classes of samples of an appropriate separating hyperplane going through the mapped target of this sample point. Since the way for choosing target samples is very similar to that for paring garden stuff, the proposed algorithm acquires its name from this. Numerical experiments on benchmark datasets show the proposed method is superior in learning efficiency and generalization performance of a classifier. The application of the proposed algorithm in learning with limited resources demonstrates its excellent performance in large-scale learning tasks.
Key wordsSupport Vector Machine (SVM)      Incremental Learning      Simulated Cutting Algorithm      Cutting Hyperplane      Cutting Depth     
Received: 30 March 2009     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Cite this article:   
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I4/491
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn