模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (4): 516-521    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
An Efficient Method for K-Means Clustering
HUANG Zhen-Hua1, XIANG Yang1, ZHANG Bo1, WANG Dong1, LIU Xiao-Ling2
1.Department of Computer Science and Technology,Tongji University,Shanghai 200092
2.Department of Computer and Information Technology,Fudan University,Shanghai 200433

Download: PDF (391 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  The existing K-Means clustering methods directly act on multidimensional datasets. Hence, these methods are extremely inefficient as the cardinality of input data and the number of clustering attributes increase. Motivated by the above fact, in this paper, an efficient approach for K-Means clustering based on the structure of regular grid, called KMCRG (K-Means Clustering based on Regular Grid), is proposed. This method effectively implements K-Means clustering by taking cell as handling object. Especially, this method uses the tactics of grid weighted iteration to effectively gain the final K classes. The experiment results show that the algorithm can quickly gain the clustering results without losing clustering precision.
Key wordsK-Means Clustering      Regular Grid Structure      Performance Evaluation     
Received: 28 July 2008     
ZTFLH: TP311.13  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HUANG Zhen-Hua
XIANG Yang
ZHANG Bo
WANG Dong
LIU Xiao-Ling
Cite this article:   
HUANG Zhen-Hua,XIANG Yang,ZHANG Bo等. An Efficient Method for K-Means Clustering[J]. , 2010, 23(4): 516-521.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I4/516
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn