模式识别与人工智能
Saturday, Jul. 26, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (3): 300-306    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Data-Dependent Kernel Function Based Kernel Optimization Algorithm
LI Jun-Bao1,2, GAO Hui-Jun2
1.Department of Automatic Test and Control,Harbin Institute of Technology,Harbin 150001
2.Department of Control Science and Engineering,Harbin Institute of Technology,Harbin 150001

Download: PDF (430 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  To solve the selection problem of kernel function and its parameters in kernel learning to enhance the performance of the algorihtm, data-dependent kernel function based kernel optimization method is proposed in this paper. The optimal objective function is built through the maximum margin criterion to solve the optimal parameter of data-dependent kernel. Experimental results show that the proposed algorithm can effectively increase the performance of kernel learning machine.
Key wordsKernel Learning      Kernel Optimization      Empirical Feature Space     
Received: 18 June 2009     
ZTFLH: TP301  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Cite this article:   
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I3/300
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn