模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (2): 178-185    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Discriminant Maximum Margin Criterion Based on Locality Preserving Projections
LIN Ke-Zheng,WANG Hui-Xin,BU Xue-Na,LIN Sheng
School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080

Download: PDF (492 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A manifold learning algorithm is proposed called discriminant maximum margin criterion (DMMC). It adopts linear projective maps and optimally preserves the local structure and the global information of the data set simultaneously. DMMC tries to find the intrinsic manifold that discriminates different face classes best by maximizing the between-class scatter and minimizing the within-class scatter. The recognition rate of the proposed algorithm exceeds those of the single PCA,Fisherfaces,MMC and LPP greatly. Experimental results on YALE and JAFFE face databases indicate that the proposed algorithm is effective.
Key wordsFace Recognition      Feature Extraction      Subspace      Linear Discriminant Analysis (LDA)      Locality Preserving Projection (LPP)     
Received: 04 May 2009     
ZTFLH: TP391.41  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIN Ke-Zheng
WANG Hui-Xin
BU Xue-Na
LIN Sheng
Cite this article:   
LIN Ke-Zheng,WANG Hui-Xin,BU Xue-Na等. Discriminant Maximum Margin Criterion Based on Locality Preserving Projections[J]. , 2010, 23(2): 178-185.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I2/178
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn