模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (2): 210-215    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
SVM Parameter Selection Algorithm Based on Maximum Kernel Similarity Diversity
TANG Yao-Hua1,GUO Wei-Min1,GAO Jing-Huai2
1.Thermal Power Institute,Henan Electric Power Research Institute,Zhengzhou 450052
2.School of Electronic and Information Engineering,Xian Jiaotong University,Xian 710049

Download: PDF (470 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at support vector machine (SVM) parameter selection problem, a novel Gaussian kernel parameter rapid selection algorithm is proposed on the basis of kernel similarity diversity maximum (MSD) by analyzing the equivalent network model and the classification principle of SVM. In addition, MSD is combined with parameter search algorithm based on cross validation, and thus it is a composite parameter selection algorithm (MSD-GS) to the realize rapid and optimal selection of kernel parameter and regularization parameter. Simulation experiment results on data sets from UCI show that MSD-GS has the merits of simpleness, celerity and accurate parameter selection with no need of adding prior knowledge. The parameter selection result is better than the traversing exponential grid search algorithm. The selected couple of SVM parameters can make SVM get high generalization performance.
Key wordsParameter Selection      Gaussian Kernel Function      Support Vector Machine (SVM)      Similarity Measurement     
Received: 05 January 2009     
ZTFLH: TP391  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
TANG Yao-Hua
GUO Wei-Min
GAO Jing-Huai
Cite this article:   
TANG Yao-Hua,GUO Wei-Min,GAO Jing-Huai. SVM Parameter Selection Algorithm Based on Maximum Kernel Similarity Diversity[J]. , 2010, 23(2): 210-215.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I2/210
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn