模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2012, Vol. 25 Issue (1): 150-156    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Counting Pedestrains in Video SequencesBased on Non-Maxima Suppression Clustering
L Ji-Min, Zeng Zhao-Xian, Zhang Mao-Jun
Department of System Engineering,College of Information System and Management,National University of Defense Technology,Changsha 410073

Download: PDF (448 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Based on the background image of a fixed scene, a four-step approach to count predestrains in video sequences is presented, and the estimation result of long-range crowds is improved compared with D.Conte’s solution in 2010 EURASIP Journal. Our primary contribution lies in non-maxima suppression clustering. The proposed density-based clustering approach applies different clustering standards to crowds at different distances from camera, hence it avoids overlarge clusters and ensuing problems. Experiments on PETS 2010 database show estimation result of long-range crowds is improved significantly, as an implicit result of smaller clusters from Non-maxima Suppression Clustering.
Key wordsPeople Counting      Non-Maxima Suppression      Clustering      Long-Range Crowd     
Received: 22 October 2010     
ZTFLH: TP391.41  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
L Ji-Min
Zeng Zhao-Xian
Zhang Mao-Jun
Cite this article:   
L Ji-Min,Zeng Zhao-Xian,Zhang Mao-Jun. Counting Pedestrains in Video SequencesBased on Non-Maxima Suppression Clustering[J]. , 2012, 25(1): 150-156.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2012/V25/I1/150
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn