模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2010, Vol. 23 Issue (5): 653-662    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Maximal Gravitation Optimization Algorithm for Function Optimization
JIN Lin-Peng,LI Jun-Li,WEI Ping,CHEN Gang
College of Information Science and Engineering,Ningbo University,Ningbo 315211

Download: PDF (659 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A global function optimization algorithm based on Newtons law of universal gravitation is proposed, namely maximal gravitation optimization algorithm (MGOA). The search agents are updated through the processes of gravitational clustering and gravitational elimination, which are two main strategies in MGOA. Four lemmas are provided to describe the mathematical foundation, and the convergence of MGOA is strictly proved. Furthermore, the proposed algorithm is improved. The experimental result shows MGOA has good performance in solving continuous function optimization problems, compared with some well-known heuristic search methods such as Particle Swarm Optimization, Differential Evolution, and Guo Tao algorithm.
Key wordsFunction Optimization      Maximal Gravitation Optimization Algorithm (MGOA)      Simulated Evolution Computation      Universal Gravitation     
Received: 13 April 2009     
ZTFLH: TP311  
  TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
JIN Lin-Peng
LI Jun-Li
WEI Ping
CHEN Gang
Cite this article:   
JIN Lin-Peng,LI Jun-Li,WEI Ping等. Maximal Gravitation Optimization Algorithm for Function Optimization[J]. , 2010, 23(5): 653-662.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2010/V23/I5/653
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn