模式识别与人工智能
Friday, May. 2, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2011, Vol. 24 Issue (1): 22-29    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Fast Twin Support Vector Regression Algorithm in Primal Space
PENG Xin-Jun1,2, WANG Yi-Fei3
1.Department of Mathematics, Shanghai Normal University, Shanghai 200234
2.Scientific Computing Key Laboratory of Shanghai Universities, Shanghai Normal University, Shanghai 200234
3.Department of Mathematics, Shanghai University, Shanghai 200444

Download: PDF (399 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Twin support vector regression (TSVR) efficiently determines its objective regression function by optimizing a pair of smaller sized SVM-type problems. The objective functions of TSVR in the primal space are directly optimized by introducing the well-known Newton algorithm. This method effectively overcomes the shortcoming of TSVR that its regressor is approximated by the dual quadratic programming problems. Numerical studies show that the proposed method provides good performance and obtains less learning time compared with TSVR.
Key wordsSupport Vector Regression (SVR)      Twin Support Vector Regression (TSVR)      Insensitive Bound      Primal Space      Newton Algorithm     
Received: 20 November 2009     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
PENG Xin-Jun
WANG Yi-Fei
Cite this article:   
PENG Xin-Jun,WANG Yi-Fei. Fast Twin Support Vector Regression Algorithm in Primal Space[J]. , 2011, 24(1): 22-29.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I1/22
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn