模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2011, Vol. 24 Issue (2): 153-159    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Kernel-Based Slow Feature Analysis
MA Kui-Jun, HAN Yan-Jun, TAO Qing, WANG Jue
Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190

Download: PDF (482 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A kernel-based algorithm is proposed to solve the nonlinear expansion problem of slow feature analysis (SFA). By using the kernel trick, the difficulties of computing directly in high dimensional space are avoided. Because of the full use of nonlinear information of the data, its output is steady. Meanwhile, based on the objective analysis of the proposed algorithm, a formula is put forward to estimate the output slowness of the signal and it is utilized as a guide line to select parameters of the kernel functions. Experimental results show the effectiveness of the proposed algorithm.
Key wordsInvariance Learning      Slow Feature Analysis      Kernel Method      Blind Source Separation     
Received: 04 January 2010     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
MA Kui-Jun
HAN Yan-Jun
TAO Qing
WANG Jue
Cite this article:   
MA Kui-Jun,HAN Yan-Jun,TAO Qing等. Kernel-Based Slow Feature Analysis[J]. , 2011, 24(2): 153-159.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I2/153
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn