模式识别与人工智能
Thursday, Apr. 3, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2011, Vol. 24 Issue (2): 210-214    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
A Covering Incremental Reduction Algorithm Based on Absolute Information Quantity
LIN Guo-Ping, LI Jin-Jin
Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou 363000

Download: PDF (268 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A covering reduction algorithm is studied under the condition that both the upper approximation operator and the under approximation operator are not changed. The absolute information quantity, information quantity and the adjacency matrix are defined. An incremental reduction algorithm is presented based on the absolute information quantity for covering generalized rough sets. The example shows that the proposed algorithm is an effective technique to remove the redundant knowledge in the complex datasets.
Key wordsCovering Reduction      Absolute Information Quantity      Information Quantity      Adjacency Matrix      Covering Incremental Reduction Algorithm     
Received: 29 March 2010     
ZTFLH: TP311.13  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LIN Guo-Ping
LI Jin-Jin
Cite this article:   
LIN Guo-Ping,LI Jin-Jin. A Covering Incremental Reduction Algorithm Based on Absolute Information Quantity[J]. , 2011, 24(2): 210-214.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2011/V24/I2/210
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn