模式识别与人工智能
Thursday, Apr. 10, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2012, Vol. 25 Issue (2): 292-299    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Semi-Supervised Learning Based Ensemble Classifier for Stream Data
XU Wen-Hua 1, QIN Zheng 1, 2, CHANG Yang 2
1.Department of Computer Science and Technology,School of Information Science and Technology,Tsinghua University,Beijing 100084
2.School of Software,School of Information Science and Technology,Tsinghua University,Beijing 100084

Download: PDF (563 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  Stream data classification algorithms are mainly based on supervised learning strategy, and they need massive labeled data for training. These approaches are unpractical due to the high cost of acquiring labeled data in a real streaming environment. A semi-supervised learning based ensemble classifier (SEClass) is presented for stream data classification. SEClass utilizes both a small number of labeled data and a great number of unlabeled data to train an ensemble classifier, and unlabeled instances are classified using the majority voting strategy. The experimental results show that the accuracy of SEClass is 5.33% higher in average than that of the state-of-the-art supervised method using the same number of labeled data for training. And SEClass is suitable for high-dimensional high-speed massive stream data classification.
Key wordsAttribute Weighting      Concept Drift      Ensemble Classifier      Homogeneity      K-means Clustering      Semi-Supervised Learning      Stream Data Classification     
Received: 11 April 2011     
ZTFLH: TP311.13  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
XU Wen-Hua
QIN Zheng
CHANG Yang
Cite this article:   
XU Wen-Hua,QIN Zheng,CHANG Yang. Semi-Supervised Learning Based Ensemble Classifier for Stream Data[J]. , 2012, 25(2): 292-299.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2012/V25/I2/292
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn