模式识别与人工智能
Tuesday, Apr. 22, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2012, Vol. 25 Issue (3): 382-387    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Discovering News Topics from Microblogs Based on Hidden Topics Analysis and Text Clustering
LU Rong, XIANG Liang, LIU Ming-Rong, YANG Qing
National Laboratory of Pattern Recognition,Institute of Automation,Chinese Academy of Sciences,Beijing 100190

Download: PDF (478 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  A method of news topics extraction from large-scale short posts of microblogging-service is proposed. Through the hidden topic analysis, the similarity measurement of short texts is solved well. In every time window, the short posts which are most likely to talk about news events are selected according to the characteristics of the news. Then, a two-level K-means-hierarchical hybrid clustering method is used to cluster all the selected data into different news topics. The experimental results show the proposed method works well on large-scale microblog dataset.
Key wordsMicroblog      Short Text      Hidden Topic Model      Topics Extraction      Hybrid Clustering     
Received: 13 October 2010     
ZTFLH: TP3  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
LU Rong
XIANG Liang
LIU Ming-Rong
YANG Qing
Cite this article:   
LU Rong,XIANG Liang,LIU Ming-Rong等. Discovering News Topics from Microblogs Based on Hidden Topics Analysis and Text Clustering[J]. , 2012, 25(3): 382-387.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2012/V25/I3/382
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn