模式识别与人工智能
Monday, Jul. 28, 2025 Home      About Journal      Editorial Board      Instructions      Ethics Statement      Contact Us                   中文
  2012, Vol. 25 Issue (5): 762-767    DOI:
Orignal Article Current Issue| Next Issue| Archive| Adv Search |
Reduction Algorithm Based on Attribute Correlation
YIN Lin-Zi, YANG Chun-Hua, WANG Xiao-Li, ZHOU Wei-Kang
School of Information Science and Engineering,Central South University,Changsha 410083

Download: PDF (348 KB)   HTML (1 KB) 
Export: BibTeX | EndNote (RIS)      
Abstract  To obtain an optimal reduct in heuristic reduction methods, the attraction and repulsion correlations of attributes are analyzed and a definition of attribute significance is presented. On this basis, a heuristic reduction method based on attribute correlation is proposed to calculate an optimal reduct, which integrates the discernibility ability of the single attribute and the correlation among attributes. The experimental results show that the proposed method employs less heuristic calculations than the similar methods and the method based on attribute frequency, and it is more effective to obtain the optimal reduct.
Key wordsDiscernibility Matrix      Attraction Set      Repulsion Set      Minimal Reduct     
Received: 13 February 2012     
ZTFLH: TP181  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
YIN Lin-Zi
YANG Chun-Hua
WANG Xiao-Li
ZHOU Wei-Kang
Cite this article:   
YIN Lin-Zi,YANG Chun-Hua,WANG Xiao-Li等. Reduction Algorithm Based on Attribute Correlation[J]. , 2012, 25(5): 762-767.
URL:  
http://manu46.magtech.com.cn/Jweb_prai/EN/      OR     http://manu46.magtech.com.cn/Jweb_prai/EN/Y2012/V25/I5/762
Copyright © 2010 Editorial Office of Pattern Recognition and Artificial Intelligence
Address: No.350 Shushanhu Road, Hefei, Anhui Province, P.R. China Tel: 0551-65591176 Fax:0551-65591176 Email: bjb@iim.ac.cn
Supported by Beijing Magtech  Email:support@magtech.com.cn